

Antarctic Research Vessel (ARV) Engineering Report: Model Test Report (Open Water and Ice)

Document No.: 5E1-098-R101 Revision: F2

Prepared by the Antarctic Support Contractor for the National Science Foundation Office of Polar Programs

#	Date	Section (if applicable)	Author/Editor	Change Details
P0	October 11, 2022	All	J. Lee	Initial draft for ASC peer review
P1	December 23,2022	All	J. Cross-Whiter	Revised with 3A test results
P2	July 28, 2023	All	J. Cross-Whiter	Revised with Hull Variant 11 test results
616			esion	olurs

Revision History

Prepared by:

John Cross-Whiter	John Cross-Whiter	July 25, 2023
Signature		
John Cross-Whiter, Senior Principal Na	val Architect, Leidos / Gibbs & Cox	
_		
Checked by:		
<u>Sean Sweeney</u>	Sean Sweeney	July 26, 2023
Signature	Print Name	Dat
Principal Naval Architect, Leidos / Gibb	os & Cox	
Engineered/Managed by:		
Justin Klag	Justin Klag	July 27, 2023
Signature	Print Name	Date
Justin Klag, Dept Manager, Leidos / Gil	bbs & Cov	
	$\mathbf{A} \mathbf{e}^{\mathbf{e}}$	
1	$\mathbf{\nabla}$	
Approved by:		
David Rosenthal	David Rosenthal	July 28, 2023
Signature	Print Name	Date
David Rosenthal, Assistant Vice Preside	ent, EG, Leidos / Gibbs & Cox	
C.I.I.		
\sim		
X ·		

Table of Contents

1.	Exec	utive Summary	1
1.1.	Aci	ronyms	2
2.	Introd	duction	3
3.	Requ	irements	4
4.	Test a	and Analysis Methodology	6
4.1.	Te	st Facilities	6
4	.1.1.	Towing Tank	6
4	.1.2.	Ice Tank	
4.2.	Мо	del Construction	7
4.3.	Мо	del Test Series	
4	.3.1.	Thruster Open-Water Tests	
4	.3.2.	Bubble Sweepdown Tests	9
4	.3.3.	Hull Resistance Tests	
4	.3.4.	Propulsion Tests	
4	.3.5.	Wake Survey Tests	
4	.3.6.	Towed Icebreaking Tests	
4	.3.7.	Free-running Icebreaking Test	11
4	.3.8.	Ice Management Performance	
4	.3.9.	Open-Water Mancuvering Tests	
4	.3.10.	Seakeeping Tests	
_	D		40
5.	Resu	its	
5.1.	Ihi	ruster Open-Water Tests	
5.2.	Bu	b. le Sweepdown Tests	
5.3	Ha	s stance lests	
54	00	wering lests	
5.5.	Wa	ake Survey Tests	
5.6.	To	wed Resistance and Propulsion Tests in Ice	
5.7.	Fre	e-Running Tests in Ice	
5.8.	lce	Maneuvering	24
5	.8.1.	Breaking out of the Channel	24
5	.8.2.	Star Maneuver	24
5	.8.3.	Turning Circle	24
5.9.	lce	Management Performance	
5.10	. Ор	en-Water Maneuvering Tests	
5.11	. Se	akeeping Tests	

6.	Conclusions	30
7.	References	32
8.	Attachment 1 – HSVA Bubble Sweepdown Test Report (Reference 4)	33
9.	Attachment 2 – HSVA Resistance and Propulsion Test Report (Reference	95) 34
10.	Attachment 3 – HSVA Wake Survey Test Report (Reference 6)	35
11.	Attachment 4 – HSVA Ice Test Report (Reference 7)	36

List of Tables

11. Allachment 4 = novA ice rest Report (Reference 7)	0
25)
List of Tables	
Table 1: Bubble Sweepdown Requirement	4
Table 2: Open Water Speed and Endurance Requirements	4
Table 3: Icebreaking Requirements	4
Table 4: Open-Water Maneuvering Requirements	5
Table 5: Seakeeping Requirements	5
Table 6: Model 5626 Characteristics	7
Table 7: Bubble Sweep-down Dye Ejection Loi/Its	0
Table 8: Bubble Sweep-down Video Fil. Index1	4
Table 9: Towed Resistance and Povering in 1.37m Ice	0
Table 10: Open-Water Maret vering Results	8
ina	
List of Figures	
	_

List of Figures

Figure 1: 49VA Model 5626 (from Reference (5))	8
Figure 2. Dye Port Locations on HSVA Model 5626 (from Reference (4))	10
Figure 3: Thruster Open-Water Curves (from Reference (5))	13
Figure 4: Bubble Sweepdown Boundaries on Variants 6 and 11 at 6 and 8 Knots	15
Figure 5: Resistance Test Results (from Reference (5))	16
Figure 6: ARV Power Requirements in Calm Water, Zero Wind (from Reference (5))	17
Figure 7: Axial, Radial and Circumferential Velocities in Propeller Plane	18
Figure 8: Free-running Power Ahead in 1.37m Ice	21
Figure 9: Free-running Power Astern in 1.37m Ice	22
Figure 10: Icebreaking Ahead in 1.37m Ice Thickness	23
Figure 11: Icebreaking Astern in 1.37m Ice Thickness	23
Figure 12: Ice breaking, Clearing with 60 degree Thruster Toe-In	25

6

Figure 13: Ice breaking, Clearing with 60 degree Thruster Toe-Out	26
Figure 14: Ice Breaking, Clearing with Parallel Thrusters	26
Figure 15: Channel Clearing in Brash Ice Field with 60 degree Thrusters	27

			Ol	Ris
	. C	esign	19	
imit	nary			
Prem				

1. Executive Summary

During several test sessions, spanning the period from March to July, 2023, a 1:24.384 scale model of the ARV, Hull Variant 11, was tested in the Hamburgische Schiffbau-Versuchsanstalt (HSVA) model testing facility, in Hamburg, Germany. This model test campaign defines the performance of the updated Design Review 5 (DR5) design baseline for the ARV.

The tests included thruster open-water, bubble sweepdown, open-water resistance and propulsion, wake survey, ice resistance and propulsion, ice maneuvering, ice management, open-water maneuvering and seakeeping tests. All propelled tests were conducted with HSVA stock ice-capable propellers on azimuthing thrusters. These tests were conducted to assess compliance with requirements in the ARV Performance Specification and Science Mission Requirements, References (1) and (2), respectively.

The tests are reported in HSVA's bubble sweepdown report, resistance and propulsion test report, wake survey report, ice testing report and open-water maneuvering report, References (*) through (8), respectively. Previous model tests, on the ARV Hull Variant 6, were reported in an earlier revision of this report, Reference (3).

The test measurements were analyzed and scaled according to HSVA's state and methodologies, as described in their test reports. Analysis of the open-water tests folloved the ITTC guidance in Reference (10) and related documents. Icebreaking tests were conducted and analyzed according to the basin's best practices for icebreaking tests, developed from their history of researching and designing icebreakers.

Bubble sweepdown tests showed that Hull Variant 11 reduces the sweepdown coverage of the transverse receive array by approximately 50% is dative to Variant 6. All other underwater sensors are free of bubble sweepdown risk.

Calm-water powering tests showed that the objective maximum open-water speed of 14 knots is easily achievable with the installed propulsion power of 19,000 kW. The delivered power required at a transit speed of 11 knots in calm water, with no power margins, is 2298 kW (3082 HP).

The wake survey indicated a relatively smooth variation of velocity across the propeller plane, but with an axial velocity during the inboard upper quadrant. The nominal wake fraction computed from the wakes or ey is 0.104.

The mode tests demonstrate that the installed propulsion power of 19,000 kW provides adequate power to maintain a speed of 3 knots in 1.37m (4.5 ft) thick ice with 0.305m (1 ft) snow coverage, rul ning ahead and astern, resulting in a power margin of approximately 1,600 kW running ahead and 600 kW running astern, at 3 knots.

Good clearance of ice from broken ice channels and brash ice fields was achieved using a range of thruster azimuthing strategies, particularly toe-in.

Maneuvering tests showed that the ARV meets the maneuverability standards in IMO Resolution MSC.137(76), Reference (11). It also meets the Performance Specification of a tactical diameter less than 3 times the vessel length.

At a speed of 12 knots the ARV is not directionally stable for thruster azimuth angles near the neutral angle of 0 deg. The width of the instability loop, i.e. the range of rudder angles over which the vessel is unstable, is 2.1 deg. This width is acceptable, according to the Explanatory Notes to Resolution MSC.137(76), thus fulfilling the Performance Specification of sufficient directional

stability via a combination of hull design and control system design. The ARV does not meet the average overshoot angle requirement in the Performance Specification. However, with the high power and consequent control authority afforded by the azimuth thrusters, along with the narrow width of the instability loop, the relatively large overshoot angles in the zig-zag tests do not indicate controllability problems during maneuvering.

There are several tests which were undertaken, but not reported by HSVA, prior to issuance of this report. Once completed, reporting of these tests will further define the performance characteristics of the ARV Hull Variant 11. The additional test reports and analyses include:

- a. Results from the maneuvering tests in ice
- b. Final reporting of results from open-water maneuvering tests
- c. Results from open-water seakeeping tests
- d. Further analysis of yaw overshoot angles during open-water zig-zag maxeuvers and analysis of yaw-checking capability sensitivity to thruster azimuth angle

These additional results and analyses will be reported in a future revision of this report

1.1. Acronyms

1D	One Dimensional
ARV	Antarctic Research Vessel
ASC	Antarctic Support Contractor
BWL	Beam at Waterline
CFD	Computational Fluid Dynamics
CPMC	Computerized Plan r Metion Carriage
DR	Design Review
DWL	Design Walerhne
HP	Horsepover
HSVA	Hon burgische Schiffbau-Versuchsanstalt GmbH
IMO	International Maritime Organization
INTC I	International Towing Tank Conference
kW	Kilowatt
LPP	Length Between Perpendiculars
LT	Long Ton
MCR	Maximum Continuous Rating
NSF	National Science Foundation
SS	Sea State

2. Introduction

During several test sessions, spanning a period from March to July, 2023, a 1:24.384 scale model of the ARV, Hull Variant 11, was tested in the Hamburgische Schiffbau-Versuchsanstalt (HSVA) model testing facility, in Hamburg, Germany. This model test campaign defines the performance of the updated Design Review 5 (DR5) design baseline for the ARV.

The tests included thruster open-water, bubble sweepdown, open-water resistance and propulsion, wake survey, ice resistance and propulsion, ice maneuvering, ice channel clearing, open-water maneuvering and seakeeping tests. The tests are reported in HSVA's bubble sweepdown report, resistance and propulsion test report, wake survey report, ice testing report and open-water maneuvering report, References (4) through (8), respectively. References (4) through (7) are attached as Attachments 1 through 4. At the time of issuance of this report the final maneuvering and seakeeping test reports were not available, and the ice testing report, Reference (7) do not include reporting on some of the maneuvering tests in ice.

The requirements for bubble sweepdown, open-water performance and icebrea ing reformance are specified in the ARV Performance Specification and Science Mission Pequirements, References (1) and (2), respectively. The model testing was conducted to a sess compliance with these requirements.

Earlier tests, on Hull Variant 6 of ARV, were reported in the previous revision of this report, Reference (3). HSVA's testing and data analysis methodologies for the thruster open-water, bubble sweepdown, open-water resistance and propulsion, while survey, ice resistance and ice powering tests are summarized therein.

... and proj ... uierein.

3. Requirements

The vessel requirements pertaining to the tests conducted in the test campaign are listed in Table 1 through Table 3.

The vessel is designed to minimize the risk of air bubble sweepdown from the free surface affecting the performance of the underwater sensors on the flat of bottom. Quantitatively, the bubble sweepdown requirement is expressed as given in Table 1.

Capability	Threshold Requirement
Bubble Sweepdown	Computational fluid dynamics (CFD) flow streamlines originating at the ship's stem shall pass no closer than 13.0 ft, measured transversely, from the centerline of the widest sonar transcucer receive array area at sustained speed of 8 kt at the rell load condition.

 Table 1: Bubble Sweepdown Requirement

The open-water speed and endurance requirements are listed in Table 2

•	• •	
Capability	Threshold Requirement	Objective Requirement
Range	17,000 nm, at 11 kt	Objective = Threshold
Endurance	90 days, in Design kefer, nce Nission	Objective = Threshold
Speed, maximum, calm water	14 knots	Objective = Threshold
Speed, cruising, calm water	1_kr⊍ts, at ≤ 80% MCR	12 knots, at ≤ 80% MCR
Speed, survey (quiet mode)	8 knots	Objective = Threshold
Speed, cavitation inception	8 knots	9 knots

Table 2: Open Water Speed and Endurance Requirements

The icebreaking requirements are listed in Table 3.

Table 3: Icebreaking Requirements

Capability	Threshold Requirement	Objective Requirement		
Transit ahead	4.5 ft ice, at speed ≥ 3 kts	4.5 ft ice, with 1 ft snow cover, at speed \ge 3 kts		
Transit ahead	1.6 ft ice, plus 1.0 ft snow cover, at speed of 5 to 6 kts	Objective = Threshold		
Transit astern	4.5 ft ice, with 1 ft snow cover, at speed \ge 3 kts	Objective = Threshold		
Turning, ahead and astern	3.5 ft ice, with 1 ft snow cover, turn 180 deg with 5 ship lengths	Objective = Threshold		
Star Maneuver	4.5 ft ice, with 1 ft snow cover, turn 180 deg within 400 ft wide reach	Objective = Threshold		
Break out of channel, ahead and astern	4.5 ft ice, plus 1.0 ft snow, achieve 90 deg turn within 300 sec	Objective = Threshold		

All icebreaking requirements are to be met in multi-year level ice with 100 psi flexural strength.

The maneuvering requirements are listed in Table 4.

Capability	Threshold Requirement	Objective Requirement
Turning circle	Tactical turning diameter < 3 ship lengths in either direction at 12 knots, full load condition, calm water.	Objective = Threshold
	No bow thruster.	
Directional stability	Stable at all speeds in all loading conditions via a combination of hull design and control system design. Sufficient directional stability to meet maneuverability requirements while maximizing fuel economy.	Objective = Threshold
Yaw overshoot	Average yaw overshoot angle from the second overshoot onwards ≤ 10° for 10/10 zig-zag maneuver, all speeds, full load.	Objective Thiosnoid
seakeeping requirements	s are listed in Table 5	

Table 4: O	pen-Water	Maneuvering	Requirements
	pon 11410.	manouronng	

Table 5: Seakeeping Requirements

Capability	Threshold Requirement	Objective Requirement
Operability	SS4: Fully operable SS5: Operable for most source operations SS6: Shipboard pel source can safely work SS7: Shipboard p. rsonnel can safely work for safe operation of the vessel	Objective = Threshold
Maximum motions at key locations	SS2: maximum vertical accelerations <0.15g maximum lateral accelerations , 0.05g at lab dt ck level Maximum roll < 3° Maximum pitch < 2°	Objective = Threshold
Prelim		

4. Test and Analysis Methodology

4.1. Test Facilities

The tests were carried out in the Hamburgische Schiffbau-Versuchsanstalt (HSVA) model testing facility, in Hamburg, Germany. This facility has a number of test basins, including a Large Towing Tank, an Ice Tank and a large cavitation tunnel (HyKat). The tests reported herein were conducted in the Large Towing Tank and Ice Tank facilities.

4.1.1. Towing Tank

The HSVA Large Towing Tank is described in Appendix Z of Reference (5). As described therein the towing tank is a 300 meter long, 18 meter wide, 5.6 meter deep test basin with a towing carriege running on rails along the long axis. Models are attached to the carriage via a thin wir which transmits the towing force to a force gauge mounted to the model. Model motions are guided by vertical steel guide posts fixed to the carriage, which allow free movement longit dually and vertically, but restrain lateral motions.

The Large Towing Tank is equipped with a secondary towing carriage, he Computerized Planar Motion Carriage (CPMC), to conduct maneuvering tests. When operative, this carriage is towed by the main towing carriage via tie rods. The CPMC has three sub-carriages, each of which is driven along one degree of freedom relative to the main carriage: X translation, Y translation and yaw rotation. When combined with the forward speed of the main carriage, motions along these three degrees of freedom describe vessel maneuvering an jectories. The CPMC can operate in two modes: captive, in which the subcarriage proton of an pre-programmed to force the model along a prescribed trajectory; and tracking, in which the model is controlled by its own control appendages and the subcarriages are forced to follow the model trajectory.

The Large Towing Tank is equipped with two wavemakers: A duplex flap wavemaker at one end, for generating long-crested wave, along the axis of the towing tank, and a 40m long snake-type wavemaker along one side wall, for generating oblique waves.

The HSV is testing tank is described in Attachment 5 of Reference (3). As described therein the is a 78 meter long, 10 meter wide, 2.5 meter deep test basin with an air forced cooling system that can generate air temperatures as low as -20°C. The tank has a towing carriage with two axis motion capabilities, for conducting straight-line and maneuvering tests in ice.

4.2. Model Construction

HSVA Model 5626, a 1:24.384 scale model of ARV Hull Variant 11, was used for all model testing. Model 5626 was constructed of wood, using industry-standard construction techniques and CNC milling of the outer surface.

The hull model was constructed according to the ARV 3D hull model, Reference (9). The full scale and model particulars, at the tested load condition and with the tested propeller, are presented in Table 6.

Description	Value (Full Scale)	Value (Model Scale)
Length overall	111.25 m (365.0 ft)	4,562m (14.967 ft)
Length between perpendiculars	108.72 m (356.69 ft)	4.458 m (14.626 ft)
Beam, DWL	24.40 m (80.05 ft)	1.001 m (3.28- ft)
Design draft	9.906 m (32.50 ft)	0.406 m (1 332 ft)
Displacement	13,733 MT (13,516 LT)	947.ź k j (≥ Դଃ Ց Ib)
Propeller diameter	4.877 m (16.00 ft)	0.200m (0 £ა6 ft)

Table 6	· Model	5626	Characteristics
		3020	Unaracteristics

The model scale was established by the availability of stock propellers at the model basin with characteristics matching the full-scale ice-capable propellers as closely as possible. The propellers selected were numbered 2288 and 2289. For test's with podded thrusters, HSVA has stock thruster housings with similar characteristics to ABB Azipod units. These housings were modified to model the design of the ARV thrusters. The base pod models were pod numbers 222-5500 and 223–5500 (Reference (5)).

Further details of the hull, prope let and pod models are provided in References (5), (7) and (8).

The model was marked with vertical stations from 1 to 20 (transom to bow), and waterlines at onemeter intervals above the design waterline, to facilitate observation of the wave and ice profiles in the resistance and propulsion test photographs.

Views of the model, completed and outfitted, are shown in Figure 1, taken from Reference (5).

Figure 1: HSVA Model 5626 (from Reference (5))

4.3. Model Test Series

To provide data for assessment against the requirements of Table 1 through Table 5, ten types of test were conducted at HSVA:

- 1. Thruster open-water tests
- 2. Bubble sweepdown tests
- 3. Open-water resistance tests
- 4. Open-water propulsion tests
- 5. Wake survey tests
- 6. Towed icebreaking tests
- 7. Free-running icebreaking tests
- 8. Ice Channel Clearing Tests
- 9. Open-water maneuvering tests
- 10. Seakeeping tests

4.3.1. Thruster Open-Water Tests

Prior to the open-water resistance and propulsion tests, thus to open-water tests were conducted to measure the performance of the thruster units in open water, without the influence of the hull. These tests were conducted in the Large Towing Tank. The results of these tests were used to guide the conduct and analyze the results of the open-water propulsion tests (Section 4.3.4) and icebreaking tests (Sections 4.3.6 and 4.3.7).

The test methodology and data analysis for the thruster open-water tests are reported in Reference (3).

4.3.2. Bubble Sweepdown Tests

Bubble sweepdown less were conducted to assess the likelihood of entrained air bubbles near the water free su face being drawn down across the underwater sensors on the keel. These tests were conducted in the Large Towing Tank facility.

It these tests a dye/water mix was ejected from an array of dye ejection ports protruding from the hull surface. The ejected dye mix followed the local streamlines at the ejection ports, indicating the trajectories of the flow streamlines from the ports.

The locations of the dye ports corresponded to streamline origination points specified in Reference (1) and used in previous CFD studies of bubble sweepdown. Dye ports were arranged along the centerline at the stem, in full-scale positions shown in Table 7.

D,DRF

Port	X m aft of FP	Y m port of Centerline	Z m below Waterline
1	0.00	0.00	0.00
2	1.57	0.00	0.58
3	3.15	0.00	1.15
4	3.69	0.00	1.35

Table 7:	Bubble	Sweep-down	Dve	Eiection	Points
14510 11	Bassio	encop denn	-,-		

The port locations are shown on the hull profile in Figure 2, taken from Reference (4).

The test methodology and data analysis for these tests are reported in References (3) and (4). Further details of the test scorp and run matrix are reported in Reference (4).

.3... Hull Resistance Tests

Hull resistance lesis were conducted to measure the resistance of the model hull, without the influence of the thrusters. These tests were conducted in the Large Towing Tank. The results of these tests were used to guide the conduct and analyze the results of the propulsion tests (Section 4., 4).

In the resistance tests the hull model was attached to the carriage via the towing wire/guide system described in Section 4.1.1. Resistance was measured by the 1D towing force gauge.

Tests were conducted with the bow thruster tunnel open and closed, to measure the sensitivity of resistance to this design feature.

The test methodology and data analysis for these tests are reported in References (3) and (5). The test matrix is reported in Reference (5).

4.3.4. Propulsion Tests

Propulsion tests were conducted to assess the power requirements of the ARV through its operational speed range. These tests were conducted in the Large Towing Tank, using the

resistance dynamometer to measure resistance forces. The resistance, propeller rotation rate, propeller shaft torque and thruster force measurements were used to find the ship self-propulsion points.

Propulsion tests were conducted with the bow thruster tunnel open, as that is the operating condition of the ARV.

The test methodology and data analysis for these tests are reported in References (3) and (5). The test matrix is reported in Reference (5).

4.3.5. Wake Survey Tests

Wake survey tests were conducted to measure the flow velocity vectors at the thruster propeller plane, to provide data for wake-adapted propeller design. These tests were conducted in the Large Towing Tank.

The wake survey tests used 5-hole pitot tubes to measure the axial, radial and tangen isi velocity vectors, relative to the propeller disk. The wake survey was carried out at a single spree, 9 knots.

The test methodology and data analysis for these tests are reported in Reference: (C) and (6).

4.3.6. Towed Icebreaking Tests

Towed icebreaking tests were conducted to assess the straight thead resistance in ice thickness of 1.37m (4.5 ft), with a 0.305m (1 ft) snow cover, at speeds of 6 and 3 knots. These tests were conducted in the Ice Tank facility.

In the towed tests, the model was towed by a moving carriage, and the resistance measured by a force dynamometer between the carriage and model. Above-water and underwater videos were recorded to assess icebreaking behavior. Texts were conducted in level ice, in the ahead and astern directions.

The test methodology and date a anysis for these tests are reported in References (3) and (7). The ice characteristics and test matrix are reported in Reference (7).

4.3.5 Free-running Icebreaking Tests

Free-running icclinating tests were conducted to assess the powering requirements in ice thickness of 1 37m (4.5 ft) with a 0.305m (1 ft) snow cover, and to assess channel break-out and i e man uvering performance. These tests were conducted in the Ice Tank facility.

Four types of free-running test were conducted:

- Straight trackline in level ice
- Breaking out of channel
- Maneuvering

The straight trackline tests, to measure powering requirements, and break-out tests, to assess channel break-out performance, were conducted in scaled 1.37 m (4.5 ft) ice thickness with 0.305m (1ft) snow cover.

The test methodology and data analysis for these tests are reported in References (3) and (7). The test matrix is reported in Reference (7).

4.3.8. Ice Management Performance

Additional free-running tests were conducted with an additional ice sheet to determine the ability to manage the ice surrounding and trailing the ARV after breaking through it. These tests were to demonstrate the ARV can safely support towed operations in ice. During model testing, three scenarios were tested to demonstrate the ice management abilities of the ARV:

- Maintenance of clear channel during unbroken ice transit
- Execution of the "side step maneuver"
- Channel widening and maintenance of clear channel during brash ice transit

The first set of ice management tests investigated how well the ARV hull can maintain a clear ice channel in an unbroken 1m (3.3 ft) thick ice sheet, while orientating the Azipods at opposing azimuth angles of 60 degrees toe-in and 60 degrees toe-out, and then alternating the pods i. p. ran al from one side to another. The second test was to create an open pool adjacent to the work no deck to support overboard science mission in unbroken ice. The third type of ice man gement test investigated widening of a broken channel and maintaining a channel in a broken ice field, using varying thruster toe-in angles.

4.3.9. Open-Water Maneuvering Tests

Maneuvering tests were conducted to assess compliance with the turning, yaw-checking and course-keeping requirements in Table 4. The maneuvering tests were carried out in the Large Towing Tank, using the CPMC, described in Section 4.1.1. For the maneuvering tests the model was propelled by its model thruster units and course lied to execute a series of zig-zag maneuvers. The CPMC was run in tracking mode to follow the model trajectories and measure the maneuvering motions.

Tests were conducted at speeds of + and 12 knots, with a rudder rate of 9 deg/sec (full scale).

As reported in Reference (8), the manedvering performance of the ARV was determined from a combination of directly n easured results and simulated maneuvers. The tested maneuvers were zig-zag maneuvers, asing rudder angles ranging from 5 deg to 35 deg and yaw switching angles ranging from 5 deg to 20 deg. These tests were used to derive hydrodynamic coefficients, for use in HSVA's moneuvering simulator. The simulator was used to compute directional stability and to simulate aurning circles, zig-zags, spirals and Williamson turns.

The test methodology, test matrix and data analysis for these tests are reported in Reference (8).

4.3.10. Seakeeping Tests

Seakeeping tests were conducted to assess compliance with the seakeeping requirements of Table 5. The seakeeping tests were carried out in the Large Towing Tank, with a free-running model.

At the time of reporting, the HSVA report on the seakeeping tests was not available. The test methodology, test matrix and data analysis for these tests will be reported in a future revision of this report.

5. Results

5.1. Thruster Open-Water Tests

The results of the thruster open-water tests are presented in Figure 3, taken from Reference (5).

Figure 3: Thruster Open-Water Curves (from Reference (5))

Figure 3 shows the effect of the Reynolds number corrections (model scale to full scale) on the $o_{1}e_{1}$ water curves.

5.2. Bubble Sweepdown Tests

The results of the bubble sweepdown tests are the underwater videos recorded during the runs. These videos have been delivered to Leidos. The video file names and test conditions are indexed in Table 8.

Run	Trim	Speed (kts)	Video File Name (.mp4)
m03	Even keel	6	Leidos_ARV_BSD_6kts
m04	Even keel	8	Leidos_ARV_BSD_8kts
m05	Even keel	4	Leidos_ARV_BSD_4kts
m06	Even keel	10	Leidos_ARV_BSD_10kts
m07	1° Bow Down	8	Leidos_ARV_BSD_8kts _1degTrimBox

Table 8: Bubble Sweep-down Video File In	dex
--	-----

The speeds and positions in Table 8 refer to the full-scale ship. The video files at have extension .mp4.

A complete discussion of the bubble sweepdown results is included in Refererce (4).

As reported therein, air bubbles originating along the stem centerline travel downwards along the stem to the ice knife, which diverts the flow outboard. At a location between Station 14 and Station 16, depending on speed, the bubble stream is transported celo v the keel by the keel edge vortex and flows across part of the transverse receive array.

At the lowest tested speed, 4 knots, approximately 2/3 of the transverse receive array is covered by bubbles, reducing to approximately 10% of the sensor area at 8 knots. The sweepdown behavior at 10 knots is very similar to that at 2 knots.

One degree of bow-down trim n's ittle influence on the sweepdown behavior.

The longitudinal transducer arrays and smaller sensors forward of them are free of bubbles at all speeds.

Reference (4) includes comparative photographs of the boundaries of the bubble sweepdown region on the totom of the keel, on the Hull Variant 6 (as reported in Reference (3)) and Hull Variant 1 mulls. These photographs are reproduced in Figure 4.

He'r Variant 11 reduces the sweepdown coverage of the transverse receive array by approximately 50%, relative to Hull Variant 6.

Figure 4: Bubble Sweepdown Boundaries on Variants 6 and 11 at 6 and 8 Knots

5.3. Resistance Tests

The results of the resistance tests are reported in Reference (5). These results are summarized in Figure 5, taken from Reference (5).

Figure 5: Resistance Test Results (from Reference (5))

The open bow thruster adds approximately 7% to the resistance over the tested speed range.

Profession

5.4. Powering Tests

The results of the powering tests are reported in Reference (5). The full scale powering results, in calm water and zero wind, are presented in Figure 6, taken from Reference (5). Figure 6 shows the delivered power with the tested propeller in blue, and with the propeller used in the previous tests (reported in Reference (3)) in black. As shown in Figure 6 the 19,000 kW installed propulsion power is more than sufficient to achieve the objective top speed of 14 knots. Figure 6 highlights the delivered power at 11 knots, 2298 kW (3082 HP). This delivered power is the calm water propulsion power, as scaled from the model tests, with no power margins applied.

Figure 6: ARV Power Requirements in Calm Water, Zero Wind (from Reference (5))

5.5. Wake Survey Tests

The wake survey results are reported in Reference (6). The reported results consist of contour and vector plots of axial, radial and circumferential velocities, plots of circumferential variations of the three velocity components and tabulated harmonics of the velocity Fourier series.

The contour plot of axial velocity, overlaid with the vector plot of circumferential and radial velocities, is presented in Figure 7, taken from Reference (6).

Figure 7: Axial, Radial and Circumferential Velocities in Propeller Plane

(From Reference (6))

The wake survey plotted in Figure 7 include radii out to 1.4 times the propeller radius. The propeller disk is highlighted in red. Within the propeller disk area, the axial velocities are fairly

uniform throughout the propeller plane, which is typical of twin-propeller installations with a centerline skeg. A wake deficit is observed in the upper inner quadrant of the propeller plane, near the hull surface, but within the propeller disk (highlighted in Figure 7) the effects on propeller inflow are modest. Its position in the propeller plane, and increasing width with increasing radius, indicate a primary influence from the decelerated flow in the hull boundary layer.

Inward-directed flow is evident throughout the propeller plane.

The nominal wake fraction, computed from the axial velocities integrated over the propeller plane, is 0.104, an improvement from Hull Variant 6 results and a typical value for this type of hullform.

Preliminary Design, Oldra

5.6. Towed Resistance and Propulsion Tests in Ice

The results of the towed resistance and propulsion tests consist of full-scale resistance and powering estimates, together with observations, videos and photographs of model behavior during the tests. These results are reported in Reference (7).

The towed resistance and powering requirements, at 3 knots, in 1.37m (4.5 ft) ice thickness with 0.305m (1 ft) snow cover, are presented in Table 9.

lce Thickness (m)	Direction	Speed (kts)	Resistance (kN)	Delivered Power (kW)	5
1.37	Ahead	3	1,538	17,392	
1.37	Astern	3	1,620	18,416	

Table 9: Towed Resistance and Powering in 1.37m Ice

The observations of the towed ice tests are reported in Reference (7). As note I therein, the model exhibited typical icebreaking behavior in the towed tests ahead. The ice sheet cracked at centerline, forward of the ice knife, and the crack was fully developed prior to ice contact with the ice knife. The ice knife in the Variant 11 hull was more effective in pushing ice pieces outboard, away from the underwater sensors near the keel centerline, han the narrower ice knife on the Variant 6 hull. The areas of underwater sensors were generally ice free. Most broken ice pieces passed above the propellers. There was some concern for propeller tip, but these contacts were with small ice pieces, and are no of concern for propeller damage.

Going astern, the model showed good ice breaking and clearing, similar to the Hull Variant 6 design. Rectangular ice floes are broken and then split at the aft skeg. Small broken ice pieces along the outer hull are cleared by the propeller wash, with the hull mostly remaining ice free. Some crushing of broken ce pieces occurred at the thruster struts, which is to be expected.

Propeller-ice interaction was observed to be less than that observed with the Hull Variant 6 design.

Prelli

5.7. Free-Running Tests in Ice

Figure 8 presents the speeds attained in the free-running tests ahead in 1.37m (4.5 ft) ice with 0.305m (1 ft) snow cover, at power levels ranging from 84% to 104% of full power. Figure 9 presents the speeds attained in the free-running tests astern head in 1.37m (4.5 ft) ice, at power levels ranging from 61% to 114% of full power.

Figure 8: Free-running Power Ahead in 1.37m Ice

Figure 9: Free-running Power Astern in 1.37m Ice

These tests showed attainable speeds of 3.1 knots and 3.0 knots in 1.37m ice, ahead and astern, respectively with the 19,000 kW propulsion power available in the ARV design.

Test observations of the free-running tests are reported in Reference (7). As reported therein, the icebreaking and clearing behavior in the free-running tests was similar to that observed in the towed tests, with slightly less the towerage on the underside of the hull and less propeller-ice interaction.

Underwater views of the bull while icebreaking in scaled 1.37m thick ice are shown in Figure 10 and Figure 11.

Figure 10: Icebreaking Ahead in 1.37m Ice Thickness

5.8. Ice Maneuvering

5.8.1. Breaking out of the Channel

Vessel trajectories, measured quantities and observations of the break-out tests are reported in Reference (7). Break-out was successful in scaled 1.37m ice, both ahead and astern. Break-out ahead was achieved in 2-3 ship lengths, and break-out astern was achieved in a little more than 1 ship length. Break-out was achieved in less than 300 seconds, in both directions, satisfying the break-out requirement in Table 3.

5.8.2. Star Maneuver

At the time of reporting the portion of Reference (7) that reports on the star maneuver tests was not available. These results will be included in a future revision of this report. The Icebriaking Performance Report in Reference (12) discusses observed behavior during these tests

5.8.3. Turning Circle

At the time of reporting the portion of Reference (7) that reports on the airning chicle tests in ice was not available. These results will be included in a future revision of this report. The Icebreaking Performance Report in Reference (12) discusses observed behavior during these tests.

Pretiminany discusses observed behavior du

5.9. Ice Management Performance

The results of the ice clearing tests in scaled 1m (3.3ft) thick ice are reported in Reference (7).

Tests for breaking the ice sheet and clearing the broken channel with thruster wash were run with the thrusters at zero degree azimuth, 60 degrees toe-in and 60 degrees toe-out. The toe-in strategy was successful in clearing the channel aft of the ARV of all but small ice pieces. The toe-out strategy pulled ice in from the channel edges, leaving larger ice pieces in the channel.

Tests with the thrusters azimuthing in parallel, alternating from side to side, left a widened channel aft of the ARV, using the aft end of the hull to break the ice along alternating sides of the channel and the thruster wash to clear the broken ice.

A side-step maneuver was used to force the aft end of the hull against one side of the channel, with zero ahead or astern speed, using the thruster wash to clear ice from the opposite side. This maneuver was successful in creating a wide pool of clear water at the ARV position.

Underwater photographs of the 60 degree toe-in, 60 degree toe-out and parallel azn u hing tests are shown in Figure 12 through Figure 14, taken from Reference (7).

Figure 12: Ice breaking, Clearing with 60 degree Thruster 1 pe In

Figure 13: Ice breaking, Clearing with 60 degree Thruster Toe-Out

Running the model through a broken channel, created in the thruster azimuth tests above, showed that a thruster toe-in angle of 60 degrees was effective in widening a broken channel and clearing the channel of large ice pieces.

Thruster toe-in angles of 30, 60 and 85 degrees were all effective at clearing a channel through a brash ice field, with forward speed and width of channel dependent on the thruster angle. Figure 15 shows brash ice clearing with 60 degree thruster angle.

Figure 15: Channel Clearing in Brash Ice Field with 60 degree Thrusters

Additional photographs of ice breaking and clearing are provided in References (7) and (12).

5.10. Open-Water Maneuvering Tests

The results of the open-water maneuvering tests are reported in Reference (8). The results are summarized in Table 10. For reference, Table 10 lists maneuvering criteria from IMO Resolution MSC.137(76) (Reference (11)) with the ARV achieved results compared to the IMO threshold values.

	4 K	nots	12 knots	
Criterion	Achieved	IMO Standard	Achieved	IMO Standard
10/10 zig-zag 1 st overshoot angle (deg)	8.4	20.0	9.9	13.8
10/10 zig-zag 2 nd overshoot angle (deg)	25.0	40.0	24.4	30.7
20/20 zig-zag 1 st overshoot angle (deg)	15.6	25.0	22.6	2: 0
Distance travelled for 10 deg change of heading with 10 deg thruster angle (/LPP)	1.07	2.5	1.12	2.5
Tactical Diameter, with 35 deg thruster angle (/LPP)	1.20	5.0	1.ぃ?	5.0
Turning Circle Advance at 35 deg thruster angle (/LPP)	1.47	4.5	1.55	4.5

Table 10: Open-Water Maneuvering Results

As shown in Table 10, the ARV exceeds the IMO maneuverability standards.

The ARV also meets the turning circle requirement in Table 1

At a speed of 12 knots the ARV is not directionally sable for thruster azimuth angles between -1.1 deg and +1.1 deg. The total instability loop width i.e. the range of rudder angles over which the vessel is unstable, is 2.1 deg. Some degree of yaw instability is not unusual for vessels with azimuthing stern thrusters, particularly with the lateral area of the ice knife at the bow. As reported in Reference (8), the Explanatory Notes for Reference (11) recognize that yaw instability at low rudder angles is acceptable, provided that the width of the instability loop is within a specified range. The maximum acceptable instability loop width is 2.9 deg for the length/speed ratio of the ARV at 12 knots, so it, degree of instability is acceptable by IMO standards. The maneuvering requirements of Table - require the ARV to be stable via a combination of hull design and control system design, with sufficient directional stability to meet maneuverability requirements. The narrow width of the ARV instability loop fulfills these requirements.

The average vaw overshoots from the 10/10 zig-zags are not reported in Reference (8), but it is a parent from the 2^{nd} overshoot angles that the ARV does not meet the average overshoot angle requirement in Table 4. With the high power and consequent control authority afforded by the azimuthing thrusters (less than 20% utilization at 12 kts), together with the narrow width of the instability loop, the relatively large overshoot angles in the zig-zag tests do not indicate controllability problems during maneuvering.

At the time of reporting the final version of Reference (8) was not available. A future revision of this report will include the final report, further analysis of the zig-zag yaw overshoot angles and analysis of yaw-checking capability.

5.11. Seakeeping Tests

At the time of reporting the HSVA report on seakeeping tests was not available. These results will be included in a future revision of this report.

Preliminary Design, Opposition, Opposition

6. Conclusions

Bubble sweepdown, open-water resistance and propulsion, wake survey, ice resistance and propulsion, ice maneuvering, ice management, open-water maneuvering and seakeeping tests were successfully carried out on a 1:24.384 scale model of the ARV, Hull Variant 11, at the HSVA model testing facility. This model testing provides definition of the performance of the DR5 design baseline for the ARV. Earlier tests, on ARV Hull Variant 6, were reported in an earlier revision of this report (Reference (3)).

During the bubble sweepdown tests, at 4 knots approximately 2/3 of the transverse receive array is covered by bubbles, reducing to approximately 10% of the sensor area at 8 and 10 knots. Hull trim makes little difference to the sweepdown behavior. Hull Variant 11 reduces the sweepdown coverage of the transverse received array by approximately 50%, relative to Hull Variant 6.

The maximum power required by the ARV is governed by icebreaking, not open-water performance, so the objective maximum open-water speed of 14 knots is easily achieved with the installed propulsion power of 19,000 kW. The delivered power required at a transferred of 11 knots is 2298 kW (3082 HP).

The wake survey indicated a relatively smooth variation of velocity across the propeller plane, but with an axial velocity deficit in the inboard upper quadrant. The nominal wake fraction computed from the wake survey is 0.104.

The installed propulsion power of 19,000 kW provides adequate power to maintain speeds of over 3 knots in 1.37m (4.5 ft) thick ice with 0.305m (1 ft) encw cover, running ahead and astern. The power margin to maintain a 3 knot speed is approximately 1000 kW running ahead and 600 kW running astern. The power required to maintain a speed of 3 knots in 1.37 m ice with 0.305m snow cover is reduced by 200kW (19,400 to 17,100) elative to Hull Variant 6.

Observations of the icebreaking behavior during the resistance and powering tests in ice demonstrated similar, or slightly better icebreaking performance compared to Hull Variant 6. These observations are supported by the reduction in power required to maintain speed in 1.37m ice.

Break out from a clear o channel was achieved in less than 300 seconds, ahead and astern, in 1.37m (4.5 ft, ice Lickness with 0.305m (1 ft) snow cover.

Good clearance of ice from broken channels during icebreaking was achieved, using a range of t e-ir, tce-out and parallel thruster strategies. Good clearance of channels through brash ice fields was achieved with thruster toe-in angles of 30, 60 and 85 degrees.

The ARV meets the IMO maneuverability standards in IMO Resolution MSC.137(76). It also meets the Performance Specification of a tactical diameter less than 3 times the vessel length.

At a speed of 12 knots, the ARV is not directionally stable for thruster azimuth angles near the neutral angle of 0 deg. The width of the instability loop is 2.1 deg, which is acceptable according to the Explanatory Notes to Resolution MSC.137(76), thus fulfilling the Performance Specification of sufficient directional stability via a combination of hull design and control system design. The ARV does not meet the average overshoot angle requirement in the Performance Specification. However, with the high power and consequent control authority afforded by the azimuthing thrusters, together with the narrow width of the instability loop, the relatively large overshoot angles in the zig-zag tests do not indicate controllability problems during maneuvering.
There are several tests which were undertaken, but not reported by HSVA, prior to issuance of this report. Once completed, reporting of these tests will further define the performance characteristics of the ARV Hull Variant 11. The additional test reports and analyses include:

- a. Results from the maneuvering tests in ice
- b. Final reporting of results from open-water maneuvering tests
- c. Results from open-water seakeeping tests
- d. Further analysis of yaw overshoot angles during open-water zig-zag maneuvers and analysis of yaw-checking capability sensitivity to thruster azimuth angle

These additional results and analyses will be reported in a future revision of this report.

Preliminany Design, Oldrag

7. References

- 1) ARV Performance Specification, Rev. A, Change 05, 23 July 2023
- 2) ARV Pep Appendix 01: ARV Science Mission Requirements, Rev 3, 2022
- 3) Antarctic Research Vessel: Model Test Report (Stage 3A), 5E1-098-R101, Rev P1, December, 2022
- 4) Bubble Sweep Down Model Test for an Revised ARV Hull Variant 11, Report RP-2023-028, HSVA, June, 2023
- 5) Calm Water Model Tests for Leidos of a Revised ARV Hullform Stock Propeller Hull Variant 11, Report RP-2023-029, HSVA, May, 2023
- 6) 3-D Wake Measurement for an Antarctic Research Vessel (ARV), Report WM-2023-009, HSVA, June, 2023
- 7) Ice Model Tests for Antarctic Research Vessel (ARV) Addendum 5 Post-JDR Hull Variant Testing, Report AT-2023-006, HSVA, July, 2023
- 8) Model Tests on the Manoeuvring and Course Keeping Performance of the Arctic Research Vessel, Report MAN-2023-005, HSVA, July, 2023.
- 9) ARV_Variant 11_Model Test_Hullform.3dm, March, 2023
- 10) ITTC Quality System Manual: Recommended Proceedines and Guidelines: 1978 ITTC Performance Prediction Method, 7.5-02-03-01.4, 11.2, 2017
- 11) Resolution MSC.137(76): Standards for Ship M moeuverability, IMO, 2002.
- 12) Antarctic Research Vessel (ARV): Icer rea ing Performance Report, 5E1-050-R201, Rev P2, June, 2023

8. Attachment 1 – HSVA Bubble Sweepdown Test Report (Reference 4)

Preliminary Design, Oldras

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GMBH

THE HAMBURG SHIP MODEL BASIN

OIDR5

Report RP-2023-028

Bubble Sweep Down Model Test for an revised ARV - Hul Variant 11 -Preliminan

HSVA Model No. 5626

Customer: Leidos

Document Control Sheet

Customer	: Leidos
Project	: ARV
Contract No.	: 617456
Report No.	: RP-2023-028
Report Title	: Additional Bubble Sweep Down Model Test for an ARV
File	: RP-2023-028_RevA.pdf

.21-Apr-2023Customer ReviewCSNRA21-June-2023Final RevisionCSNK	Rev. No.	Date	Reason for Issue	Prepared by	Checked by	Approved by
A 21-June-2023 Final Revision CS NK NR	•	21-Apr-2023	Customer Review	CS	NR	00
	А	21-June-2023	Final Revision	CS	NK	NR

Summary: On behalf of *Leidos* bubble sweep down model tests were performed for an Antarctic Research Vessel (ARV) with a revised hull variant (Hull Verlar, 11) at the draught of 9.91 m using a model towing test setup in calm water at the speeds of 4, 6, 8 and 10 kts.

The aim of these tests was to visualize the cuble flow characteristics while these are being transported downwards from the water surface along the stem to below the hull. Special attention was prior to the interaction with the sonar array. Initial tests were conducted before with an initial hull form in 2 test phases documented in HSVA Report RP-2023-009 an 'RP-2022-086.

Four underwater can eras were taking video footage of dark coloured dye flowing out of various outlet located on the bow.

Conclusion :

Air bubbles in the water near the bow close to the centre line were found to travel downwards along the stem to the forefoot of the keel. Here the flow is deflected sideways, but later transported below the keel by an edge vortex.

- (2) The lowest speed (4 kts) showed the highest coverage of marked streamlines on the transversal transducer. Improvements can be indicated until 8 kts as 10 kts tests showed a similar behaviour. The streamline covers about 2/3 of the cross beam transducer area at 4 kts speed while at 8 kts only about 10% are covered.
- (3) The longitudinal beam sonar sensor was free from marked streamlines.
- (4) The additional, smaller sonar transducers, forward of the longitudinal beam sonar, were free from any air bubble flow.
- (5) Comparisons of the initial tests with Mo5601 and Mo5626 showed a reduction of about 50% coverage on the transversal sonar transducer.

Leidos - ARV

Report RP-2023-028

chodor

M.Sc. Christian Schröder - Senior Project Manager -

run, i.V.

Dipl.-Ing. Nils Reimer - Division Manager Arctic Technology -

Contents

1.	Text of Report	Page
1.1	Introduction and Description of the Model	3
1.2	Test Methodology	. 5
1.3	Test Results	. 6
1.4	Comparison to Initial ARV Bubble Sweep Down Tests	7
1.5	Conclusions	. 7
2.	Figures	
2.1	Hull Form Characteristics - HSVA Model 5626-00000	. F1
2.2	3D View of the Fore Body - HSVA Model 5626-00000	. F2
2.3	Markings on the Box Keel – HSVA Modell 5626-00000	. F.
2.4	Underwater Camera Rig	. 54
2.5	Camera Angles and Outlet Numbering - HSVA Modell 5626-00000	. F5
2.6	Video Snapshot, Even Keel, 4.0 kts, Outlet 1	. F6
2.7	Video Snapshot, Even Keel, 4.0 kts, Outlet 2	. F7
2.8	Video Snapshot, Even Keel, 4.0 kts, Outlet 3	. F8
2.9	Video Snapshot, Even Keel, 4.0 kts, Outlet 4	. F9
2.10	Video Snapshot, Even Keel, 6.0 kts, Outlet 1	. F10
2.11	Video Snapshot, Even Keel, 6.0 kts, Outlet 2	. F11
2.12	Video Snapshot, Even Keel, 6.0 kts, Outlet 3	. F12
2.13	Video Snapshot, Even Keel, 6.0 kts, Outlet 4	. F13
2.14	Video Snapshot, Even Keel, 8.0 kts, Octi 11	. F14
2.15	Video Snapshot, Even Keel, 8.0 kts Ou let 2	. F15
2.16	Video Snapshot, Even Keel, 8.0 kts, Outlet 3	. F16
2.17	Video Snapshot, Even Kee, 8.8 kts, Outlet 4	. F17
2.18	Video Snapshot, Even K. I, 10.0 kts, Outlet 1	. F18
2.19	Video Snapshot, Even Keel, 10.0 kts, Outlet 2	. F19
2.20	Video Snapshot, Even Keel, 10.0 kts, Outlet 3	. F20
2.21	Video Snapsa ot, Even Keel, 10.0 kts, Outlet 4	. F21
2.22	Video Snap thot, 1° trim to bow, 8.0 kts, Outlet 1	. F22
2.23	Video Shapshot, 1° trim to bow, 8.0 kts, Outlet 2	. F23
2.24	Video Snapshot, 1° trim to bow, 8.0 kts, Outlet 3	. F24
2.27	Video Snapshot, 1° trim to bow, 8.0 kts, Outlet 4	. F25

1.1 Introduction and Description of the Model

On behalf of Leidos bubble sweep down model tests were performed for an Antarctic Research Vessel (ARV) with a revised hull variant (Hull Variant 11) at the draught of 9.91 m using a model towing test setup in calm water at the speeds of 4, 6, 8 and 10 kts.

The aim of these tests was to visualize the bubble flow characteristics while these are being transported downwards from the water surface along the stem to below the hull. Special attention was paid to the interaction with the sonar array. Initial tests were conducted before with an initial hull form in 2 test phases documented in HSVA Report RP-2023-009 and RP-2022-086.

Air bubbles may occur in the water due to

- breaking bow wave
- outgassing in flow regions of lower pressure / higher flow speed
- naturally present in the upper layer close to the water surface (e.g. from breaking wind waves)
- trapped air in e.g. thruster tunnels due to pitch and heave motion of the vestel in waves

Bubbles due to the breaking bow wave and due to breaking wind waves are expected to be present only in the water column between the surface and a depth of approx. 1.5 meter.

The HSVA Model 5626 is built from wood to a scale ratio of 1.24.384. The principal dimensions of ship and model are as follows:

	Ship	Model
Number	_	5626
Index		00010
L _{PP}	108.72 m	4458.7 mm
B _{WL}	24.4 m	1000.7 mm
TLosign	9.906 m	406.3 mm
C ⁺ ,De ign	0	.5094
V _{Design} (excl. appendages)	13385,4 m ³	0.923 m^3

In order to stimulate turbulent flow around the model it was equipped with two sand stripes. One 50 mm wide sand stripe is running from the intersection of station 18 with a horizontal line on 11.91 m above base line diagonal to the fore foot. A second 30 mm wide sand strip was fitted vertically aft of frame 19.5.

The hull geometry of the model is displayed in figures F1. 3D view of the models are given by figures F2. For the bubble sweep down tests no propulsion aft arrangement was fitted.

Four underwater cameras with different view angles were taking video footage of dark coloured ink flowing out of various outlets located on the hull in the bow region. The markings of the sonar array were provided by the customer and are shown in figure F3. A sketch of the underwater camera rig is depicted in figure F4.

Based on previously performed CFD calculations, fixed positions for ink outlets were installed. The positions of the outlets are given in the following table:

Outlet No	X [mm] aft of FP	Y [mm] port of CL	Z [mm] below WL	Comment
1	0	0	0	
2	1570	0	580	
3	3150	0	1150	
4	3690	0	1350	

The designated number for each outlet is shown in figure F5. Numbering increases in the direction from bow to stern and centre line to port.

The following two figures show the locations marked in extracts of the hull lines.

1.2 Test Methodology

Tests were carried out in HSVA's large towing tank with a usable test length of approximately 200 m. The model was towed underneath the test carriage and was free to trim and heave. A biodegradable dye was used as ink. Each outlet on the hull could be opened individually.

The following tests were carried out on 14th of April 2023:

Test No.	Draught	Trim	Outlets	Speeds	Outlet Distance hull
m03	9.906 m	Even keel	1-4 / all together	6 kts	10 mm
m04	9.906 m	Even keel	1-4 / all together	8 kts	0 mn
m05	9.906 m	Even keel	1-4 / all together	4 kts	10 mm
m06	9.906 m	Even keel	1-4 / all together	16 kts	10 mm
M07	9.906 m	Trimmed 1° to the bow	1-4 / all together	8 kts	10 mm

Each listed test runs was recorded on video and provided of the customer in digital MP4 format (codec: H.264 MPEG-4 AVC, resolution: 1920x1980 pixels, frame rate: 30 fps).

Preiminand

1.3 Test Results

Video snapshots of the first test run (m03) on even keel and at the speed of 4.0 kts are shown in figures F6; F7; F8 and F9, each opened outlet separately with an outlet distance of 10mm to the model hull. Please note, that judging the flow of the dye is far easier from watching the video than from the snapshots.

The air bubbles, following the flow from outlet 1, travel down the stem and pass outlet 2/3 which are located on the same streamline. The flow stays above and aside the box keel until approximately frame 16 where the keel edge vortex takes the flow below and right across the sensor area of the cross beam sonar (frame #12.3), see page F6, F7. The data from the tests with opened outlets 2/3 and 4 give a very similar impression to the opened outlet 1 as they are located downstream on approximately the same/ close flowline. About 50% of the area of the transversal transducers is covered by the coloured streamlines.

Video snapshots of the second test run (m04) on even keel and at the speed of 6.0 kts are shown in figures F10; F11; F12 and F13. The flow stays above and aside the box keel until approx marely frame 15.5 where the keel edge vortex takes the flow below and right across the sensor area of the cross beam sonar (frame #12.3), see page F10, F11. The data from the tests with open eo outlets 2/3 and 4 give a very similar impression. About 25% of the area of the trans er al transducers is covered by the coloured streamlines.

Video snapshots of the third test run (m05) on even keel and at the speed c 80 kts are shown in figures F14; F15; F16 and F17. The flow stays above and aside the box keel until approximately frame 15 where the keel edge vortex takes the flow below and right across the sensor area of the cross beam sonar (frame #12.3), see page F14, F15. The data from the tests with opened outlets 2/3 and 4 give a very similar impression. About 10% of the area of the transversal transducers is covered by the coloured streamlines.

Video snapshots of the fourth test run (m03) on even keel and at the speed of 10.0 kts are shown in figures F18; F19; F20 and F21. The figures show, that no significant changes can be noted compared to the 8kts tests. The flow success above and aside the box keel until approximately frame 14.5 where the keel edge vortex takes the flow below and right across the sensor area of the cross beam sonar (frame #12.3), see page F18, F19. The data from the tests with opened outlets 2/3 and 4 give a very similar impression. About 10% of the area of the transversal transducers is covered by the coloured streamines.

Video snapshots of the last test run (m03) trimmed 1° to the bow and at the speed of 8.0 kts are shown in figures F22; F23; F24 and F25. The figures shows, that no significant changes can be noted compared to the even keel condition.

Comparison to Initial ARV Bubble Sweep Down Tests 1.4

The actual tests presented in this report are compared to the previous bubble sweep down tests in January with the initial tested hull form (Mo5602). Below the conditions wich are tested during both test campaigns (6/8 kts) are compared directly. Exemplary opening 2 is choses as the results of both tests showed very comparable conditions for opening 1-3. The figures below clearly show an improvement in between the tests of hull form Mo5601 and Mo5626. The covered are of the marked streamlines on the transversal transducers are reduced by about 50% judged by the team of HSVA based in the videos and snapshots.

......8kts.....6kts.....

1.5 **Conclusions**

The following conclusions can be drawn from the bubble sweep down mode tests:

- (1) Ar bubbles in the water near the bow close to the centre line were found to travel downwards along the stem to the forefoot of the keel. Here the flow is deflected sideways, but later transported below the keel by an edge vortex.
- (2) The lowest speed (4 kts) showed the highest coverage of marked streamlines on the transversal transducer. Improvements can be indicated until 8 kts as 10 kts tests showed a similar behaviour. The streamline covers about 2/3 of the cross beam transducer area at 4 kts speed while at 8 kts only about 10% are covered.
- (3) The longitudinal beam sonar sensor was free from marked streamlines.
- (4) The additional, smaller sonar transducers, forward of the longitudinal beam sonar, were free from any air bubble flow.
- (5) Comparisons of the initial tests with Mo5601 and Mo5626 showed a reduction of about 50% coverage on the transversal sonar transducer.
- (6) Compared to research ships designed for a similar operational profiles the bubble sweep down test observation of the ARV (Hull Variant 11) is showing less potential sonar areas flowlines orientating origin. covered with from the bow centre-line

2.1 Hull Form Characteristics - HSVA Modell 5626-00000

2.2 3D View of the Fore Body – HSVA Modell 5626-00000

2.3 Markings on the Box Keel – HSVA Modell 5601-00010

Gestänge steht hier über Messträger 2170 A Perspective sck Messträger Wasserlinie Wasserlinie Wasserlinie in3 23 Ā 573 1279 573 413 940 728 739 979 531 942 747 . 285 Mo5601 - BubbleSweepDown 28.09.2022 JL Kamera UW-Gestell ¥. 1853 Datum Name Unsprung Blattformat DIN A3

2.4 Underwater Camera Rig (Example)

2.5 Camera Angles and Outlet Numbering – HSVA Modell 5626-00010

9. Attachment 2 – HSVA Resistance and Propulsion Test Report (Reference 5)

Preliminary Design, Oldrag

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GMBH

THE HAMBURG SHIP MODEL BASIN

OIDR5

Report RP-2023-029

Calm Water Model Tests for Leidos of a Revised ARY Hullform

Prelimina Stock Propeller -Hull Variant 11 -

HSVA Model No. 5626

Customer: Leidos

Document Control Sheet

Customer	: Leidos
Project	: Model Tests for an ARV
Contract No.	: 617456
Report No.	: RP-2023-029
Report Title	: Calm Water Model Tests for Leidos of a revised ARV Hullform - Stock Propeller - Hull Varinat 11 -
File	: RP-2023-029.pdf

Rev. No.	Date	Reason for Issue	Prepared by	Checked by	Approved y
•	12-May-2023	Final report	CS	SBP	NR
•					

Summary:

On behalf of *Leidos* calm water model tests were performed for a revised Antarctic Research Vessel (ARV). The actual tested hullform is hull solant 11. The vessel's propulsion system consists of two azipod units in pulling condition (HSVA no. 222/223-5500) with controllable pitch propeller (HSVA no. 2298/2289).

This report presents the result of elf-propulsion and resistance tests performed at one draught with the model equipped with all appendages on a speed range from 6 knots to 15 knots. Furthermore the il fluence of the condition with closed bow thruster tunnel was tested from 6 knots to 15 knots. The results of the 3D-wake measurement at the location of the propeller plane are locumented in the separate HSVA report WM-2023-009.

Conclusions.

) The wave pattern of the vessel showed a typical picture. From 12 knots and higher speeds a breaking bow wave can be observed. Starting at 13.5 knots a pronounced bow wave and stern wave system can be seen. This is probably forced by the hull shape optimised for ice breaking.

- (2) At the 9.906 m draught a delivered power of 2298 kW is predicted at a ship speed of 11 knots for the trial condition without head wind (force Bft. 0) based on the used high class ice propeller. The recalculation for the previous used stock propellers for the same conditions results in a required power of 2016 kW.
- (3) At the 9.906 m draught a delivered power of 2642 kW is predicted at a ship speed of 11 knots for the service condition with 15 % added on PD and without head wind (force Bft. 0) based on the used high class ice propeller. The recalculation for the previous used stock propellers for the same conditions results in a required power of 2318 kW.
- (4) The difference in the effective power between the condition with bow thruster tunnel open and closed is in average over the whole speed range about 3 %.

Report RP-2023-029

DIDRE **Calm Water Model Tests for Leidos** of a Revised ARV Hullform

- Stock Propeller -- Hull Variant 11 -

15 Leidos Antarctic Support Contract 1195. Freedom Drive 20190 Reston USA

HSVA Model No. 5626

Hamburg, May 2023

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GmbH

i.A. Christian Schröder

- Senior Project Manager -

i.V. Nils Reimer - Division Manager Arctic Technology -

Preliminar

Contents

1.	Text of Report	Page
1.1		
2.	Diagrams	
2.1	Trial Prediction - Headwind Bft. 0	D1
2.2	Service Prediction - 15% Sea Margin on PD, Headwind Bft 0	D2
2.3	Resistance Comparison - Bow Thurster Tunnel Impact	D3
2.4	System Open Water Characteristic of Propeller 2288/89 and Pod 222/223	D4
2.5	System Open Water Characteristic of Propeller 2621/22 and Pod 222/223	D5
3.	Figures	
3.1	Hull Form Characteristics - HSVA Model 5626-00000	. F 1
3.2	3D View of the Fore Body - HSVA Model 5626-00000	F2
3.3	3D View of the Aft Body - HSVA Model 5626-00000	F3
3.4	Propulsion Arrangement	F4
4.	Photographs	
4.1	Formation of Waves - Model 5626-00020, T = 9.91 m	P1
4.2	Photographs of Model 5626	P5
5.	Tables of Results	
	Result Tables - T= 9.906 m - Resistance and Figure 100 ulsion	T1
	Result Tables - $T=9.906 \text{ m}$ - Resistance and Propulsion (Recalculation P2621/2622)	T10
	Pagult Tables T=0.006 m Pagista as Para Hull	 T10
	System Open Water Character, jc of Propeller 2288/80 and Pod 222/223	T73
	System Open Water Characteristic of Propeller 2621/22 and Pod 222/223	T24
	System Open water Characteristic of Propence 2021/22 and 100 222/223	1 24

Appendices

А	Performance and Analysis of Ship Powering Tests	A1
В	Mydel Tests with Azimuthing Drives	B1
I	Load Variation Analysis	. I1
Z	Specification of Large Towing Tank	Z1

1.1 Introduction and Description of the Model

On behalf of *Leidos* calm water model tests were performed for a revised Antarctic Research Vessel (ARV). The actual tested hullform is hull variant 11. The vessel's propulsion system consists of two azipod units in pulling condition (HSVA no. 222/223-4400) with controllable pitch propeller (HSVA no. 2288/2289).

This report presents the results of self-propulsion and resistance tests performed at one draught with the model equipped with all appendages on a speed range from 6 knots to 15 knots. Furthermore the influence of the condition with closed bow thruster tunnel was tested from 6 knots to 15 knots. The results of the 3D-wake measurement at the location of the propeller plane are documented in the separate HSVA report WM-2023-009.

Ship Number Index 4458.7 mm Lpp 108.72 m B_{WL} 1000.7 mm 406.3 mm T_{Design Draught} 0.5094 C_{B,Design Draught} 13385 m³ $\nabla_{\text{Design Draught}}$ (excl. appendages) 0.9232 m^3

In order to stimulate turbulent flow around the model it was equipped with two sand stripes. One50 mm wide sand stripe is a using from the intersection of station 18 with a horizontal line on11.91 m above base line diagonal to the fore foot. A second 30 mm wide sand strip was fitted vertically aft of frame 19.5. These are not shown on the model pictures as these were done during ice model test

A photo grid with 41 mm spacing (corresponding to 1 m in full scale) is applied at the 9.906 m design wate ane for judging the wave system generated by the vessel.

The ball cometry of the model is displayed in figures F1. 3D views of the models are given by figures F2 and F3. The pod-propeller arrangement is shown on figure F4. Photographs of the model are given on pages P5 through P6.

The HSVA model 5626 is built from wood to a scale ratio of 1:24.384. The principal dimensions of the ship and model are as follows:

Page 4

For the self-propulsion tests the stock propeller HSVA nos. 2288/2289 on POD nos. 222/223-5500 were used. The open water characteristics of the propulsion system are shown in diagram D4 and table T23. The propellers have the following principal particulars:

	Ship	Model
Propeller No.		2288 / 2289
Diameter	4.877 m	200 mm
Hub diameter ratio	0.2	381
Mean pitch ratio	0.9	985
Disk area ratio	0.:	553
Material		Brass
Sense of rotation	Ri	ght
Number of blades		4
Туре	Controll	able pitch

For the previous self-propulsion tests the stock propeller HSVA nos 2621/2622 on POD nos. 222/223-4400 were used. This open water characteristics of the propulsion system are shown in diagram D5 and table T24. The results of this test campaign are recarculated for the previous used stock propellers to gain a good comparison of the two hull variants.

The propeller plane was located 597.2 mm 14.55. m in full scale] in front of the aft perpendicular. The propeller shaft was inclined by 4°. The rOD azimuth axis is located 450.2 mm [10.977 m in full scale] in front of the aft perpendicular and orthogonal towards the base line. The PODs are mounted 225.0 mm [5.486 m in full scale] to each side. The propeller turning direction was set to turning inside over the top when going ahead. The arrangement drawing can be seen on page F4.

Prelimi

Page 5

1.2 Test Program

Test No.	Draught	Kind of Test	Speeds	Remark
23-0252	9.91 m	Resistance	6.0 – 15.0 kts	bow thrutser tunnel closed
23-0253	9.91 m	Resistance	6.0 – 15.0 kts	bow thrutser tunnel open
23-0254	9.91 m	Self propulsion	6.0 – 15.0 kts	bow thrutser tunnel open
23-245	9.91 m	3D- Wake	9 kts	bow thrutser tunnel open
9373/9374		Propeller Open Water Test		System test of pod and propeller

The following tests were carried out in HSVA's large towing tank in week 16 / 2023:

O Pou and propeller

1.3 Test Analysis

The test results were analysed according to the HSVA Standard Correlation Method which is described in Appendix A. The resistance coefficient was calculated using HSVA's method with the following correlation allowance:

For comparison reasons and consistency with other projects a virtual length of $L_{PP} = 97.727$ m was taken as input for the calculation of CA. That length reflects the distance between perpendiculars if the aft perpendicular is placed in the rudder shaft / azimuth turning centre.

The resistance of the appendages and openings such as bilge keels, bow thruster tunnels etc., which are not fitted on the model is considered theoretically by adding an additional frictional resistance component for the main and service predictions (see DRT-Values in the footnotes of the data tables). In this case all relevant appendages were fitted on the model during the tests, thus DRT-value is set to 0

1.4 Test Results

The tables T1 to T9 summarise the model test results as well as the trial and service predictions for wind from ahead of Bft. 0. For the service predictions a sea margin of 15 % on PD is taken into account. The information is additionally visualised in diagrams D1 and D2 (trial and service condition) in which the delivered power is plotted in function of both ship speed and propeller revolutions. These diagrams show as well the recalculated results for the previous used stock propellers which are also shown in tables T10 to T18. In these diagrams, the power demand at a ship speeds of 11 knots is marked For trial and service condition the following power demands are predicted at a ship speed of 11 knots:

M5626-00020 with stock propeller HSVA nos. 2288/2289 on POD nos. 222/223 5500							
Draught	$\begin{array}{l} \mbox{Trial Condition} \\ \mbox{Head wind Bft. 0} \\ \mbox{v}_{S} = 11 \ \mbox{kts} \end{array}$	Service Condition (15 % sea m aroin) Head wind Bft. 0 $v_S = 11 \text{ kts}$					
T = 9.906 m	$P_{\rm D} = 2298 \; \rm kW$	$P_{\rm D} = 26.12 \text{ kW}$					
M5626-00020 with stock propeller HSVA nos. 2288/2289 on POD nos. 222/223 5500 recalculated to propeller HSVA nos. 2621/2622 or POD nos. 222/223 4400							
Draught	Trial Condition Head wind Bft. 0 $v_S = 11$ kts	Service Condition (15 % sea margin) Head wind Bft. 0 $v_S = 11$ kts					
T = 9.906 m	$P_{\rm D} = 2016 {\rm kW}$	$P_D = 2318 \text{ kW}$					

The wave patterns generated by the model are visualised on pages P1 through P4. The difference in the effect ve power between the condition with bow thruster tunnel open and closed is about 3 % in a enge over the whole speed range and is displayed in diagram D3.

1.5 Conclusions

The following conclusions can be drawn from the model tests conducted:

- >) The wave pattern of the vessel showed a typical picture. From 12 knots and higher speeds a breaking bow wave can be observed. Starting at 13.5 knots a pronounced bow wave and stern wave system can be seen. This is probably forced by the hull shape optimised for ice breaking.
- (2) At the 9.906 m draught a delivered power of 2298 kW is predicted at a ship speed of 11 knots for the trial condition without head wind (force Bft. 0) based on the used high class ice propeller. The recalculation for the previous used stock propellers for the same conditions results in a required power of 2016 kW.
- (3) At the 9.906 m draught a delivered power of 2642 kW is predicted at a ship speed of 11 knots for the service condition with 15 % added on PD and without head wind (force Bft. 0) based on the used high class ice propeller. The recalculation for the previous used stock propellers for the same conditions results in a required power of 2318 kW.
- (4) The difference in the effective power between the condition with bow thruster tunnel open and closed is in average over the whole speed range about 3 %.

2.1 Trial Prediction - Headwind Bft. 0

2.2 Service Prediction - 15% Sea Margin on PD, Headwind Bft 0

2.3 Resistance Comparison - Bow Thurster Tunnel Impact

HSVA Model 5626-00010 / 000000

2.4 System Open Water Characteristic of Propeller 2288/89 and Pod 222/223

Open Water Test Result

2.5 System Open Water Characteristic of Propeller 2621/22 and Pod 222/223

Open Water Test Result

3.1 Hull Form Characteristics - HSVA Model 5626-00000

3.2 3D View of the Fore Body - HSVA Model 5626-00000

3.3 3D View of the Aft Body - HSVA Model 5626-00000

HSVA Model 5626-00010 Leidos

Arrangement of the Thruster and Propeller Lambda 24.384

Dwg no. 45-23 Date: 17.03.2023 -ka-

F4

3.4 Propulsion Arrangement

Δ

Hamburg Ship Model Basin | Bramfelder Strasse 164 | 22305 Hamburg, Germany Phone.: +49 (0) 40 / 69 203 -0 | Fax: +49 (0) 40 / 69 203 -345 | www.hsva.de

4.1 Formation of Waves – Model 5626-00020, T = 9.91 m

 $V = 11.00 \text{ kts} / F_N = 0.1752$

 $V = 13.50 \text{ kts} / F_N = 0.2150$

P5

4.2 Photographs of Model 5626-00010

P6

5.1 Result Tables - T= 9.906 m - Resistance and Propulsion

Hamburgische Leidos Report SchiffĎau-WP Versuchs-Prepared by cs Date 20.04.2023 Τ1 Anstalt GmbH Model Tests for an ARV Model 5626-00020 Propeller 2288 / 2289 Scale 24.384 MAIN DIMENSIONS OF SHIP Length betw. perpendiculars LPP = 108.720 m waterline LWL = 106.360 m submerged LOS = 106.360 m Breadth, waterline BWL = 24.400 m DR5 Draught, fore TF = m 9.906 m mean TM = " aft TA = Displacement, bare DISV = m 13385 m3 13406 m3 , appended DISV = Wetted surface, bare S = 3315 m2 3296 m2 with appendages ... S = Block coefficient 0.509 (based CB =Prismatic coefficient CP = 0.581 (Waterline coefficient CWP = Centre of buoyancy XB = 0.826 0.53% LPP of LPP/2 DIMENSIONS OF PROPELLER Stb 4.877 m 4.877 m Diameter Pitch ratio ... (mean) ... PP. DP 0.985 0.985 Hub diameter ratio DH/LP 0.381 0.381 Disc area ratio ... Number of blades .. NE/A0 =0.553 0.553 NPB = 4 Sense of rotation left right MCK 19,000 kW (2x 9,500 kW) RATED POWER MODEL CONDITION with POD nos. 222/223-5500 propeller turning inward over the top when going ahead bow thruster tunnel open URBULENCE INDUCTION 2 sandstripe

> FILES WP230254_P.D Str1316

H S V	Hamburgische Schiffbau- /ersuchs- Anstalt GmbH	Prep	ared by	Leido cs Da	os ite 20.	04.2023		Report WP T2
			I					
	Model 5626-00)020 Prope	eller 228	88 / 22	.89		Sca	ale 24.384
T T	Test No. 23-02 Test Date 19.04	254/23-0253 -2023	}	Draug Displ	ht acement	= (9.906 n 13406 n	า 13
٩ -	lodel condition:	with POE propelle bow thru) nos. 22 er turnin ister tur	22/223- ng inwa nnel op	5500 Ird over Den	the top	o when g	joing ahead
			FA	IRED MC	DEL DAT	A		
	V [m/s]	FN F [-]	N*E-6 [-]	RTM [N]	N [1/s]	T [N]	Q [NM]	FD
	.625 .833 1.042	0956 1274 1593	2.414 3.216 4.022	6.31 10.71 16.69	3.78 5.00 6.27	2.13 3.72 6.03	.1126 1949 .2056	2.07 3.39 4.99
	1.146 1.250 1.406	5 .1753) .1911 5 .2150	4.425 4.824 5.428	20.38 24.60 32.26	6.92 7.59 8.63	7.49 5.22 12.45	.3752 .4557 .6017	5.88 6.83 8.39
	1.563	.2390	6.033	41.27	9.70	15.42	.7740	10.07
			<	76				
			\mathcal{A}					
		50						
	nin							
<	2161.							

Conversion with values for model		
Length for calcul. LOS = 4.362 m CF acc. to ITTC, CA = 0.189E-3	Tankwtemp. = 15.3 NY = 1.1300E-6	deg C m2/s
Wetted surface $\dots = 5.54 \text{ m}^2$	KHU = 999.0	Kg/III3

Leidos

Report WP Т3

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Model 5626-000	20 Propeller 228	38 / 2289		So	cale 24	4.384
Test No. 23-025 Test Date 19.04.	4/23-0253 2023	Draught Displacement	= =	9.906 13406	m m3	
Model condition:	with POD nos. 22 propeller turnir bow thruster tur	22/223-5500 ng inward over nnel open	the	top when	going	ahead

RESISTANCE AND PROPULSION COEFFICIENTS

			NE0101/1			000		0	
	Full sc	ale shi	p withou	t corre	ction o	f wake a	and prope	eller eff	iciercy
	V [KTS]	FN [-]	RN*E-8 [-]	CR*E3 [-]	CF*E3 [-]	CT*E3 [-]	ADVCV [-]	KT [· J	[-]
	$\begin{array}{r} 6.00 \\ 8.00 \\ 10.00 \end{array}$.0956 .1274 .1593	2.764 3.683 4.605	1.922 1.881 2.015	1.808 1.740 1.689	3.918 3.809 3.894	.8274 .8371 .8307	0.732 . 0951 . 0959	.02466 .02438 .02439
	$11.00 \\ 12.00 \\ 13.50$.1753 .1911 .2150	5.067 5.524 6.216	2.125 2.268 2.545	1.668 1.650 1.625	3.983 4 177 4 35	.8278 .8235 .8146	.0978 .1002 .1046	.02449 .02476 .02526
	15.00	.2390	6.908	2.820	1.605	4.612	.8057	.1092	.02574
			X	1,					
		nin							
01	e///								

Conversion with Length for calcul. LOS = 106.360 mCF acc. to ITTC, CA = 0.189E-3Seaw.-temp. = 15.0 deg C NY = 1.1882E-6 m2/s RHO = 1025.9 kg/m3 deg C 1+k = 1.000 kg/m3

Leidos

Report WP T4

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Model 5626-0	0020 Propeller 228	8 / 2289		So	cale 24	.384
Test No. 23-0 Test Date 19.0	1254/23-0253 14.2023	Draught Displacement	= =	9.906 13406	m m3	
Model condition	<pre>with POD nos. 22 propeller turnin bow thruster tun</pre>	2/223-5500 g inward over nel open	the [·]	top when	going	ahead

POWER AND PROPELLER REVOLUTIONS

Full scale ship without correction of wake and propeller efficiency

	-		F					- F - F -			
	V [KTS]	PE [KW]	PD [KW]	N [RPM]	FN [-]	RF/RT [-]	CTVOL [-]	CDVOL [-]	ETAD 「・」	TET? [N]N]	ZV [M]
	$\begin{array}{c} 6.00 \\ 8.00 \\ 10.00 \end{array}$	195 449 897	393 900 1777	45.9 60.8 76.2	.0956 .1274 .1593	.4613 .4566 .4338	.02289 .02225 .02274	.04611 .04466 .04517	.196 .498 .505	0 0 0	.024 .054 .107
	$11.00 \\ 12.00 \\ 13.50$	1221 1632 2468	2400 3194 4799	84.1 92.2 104.9	.1753 .1911 .2150	.4189 .4017 .3728	.02320 02379 02 46	.04572 .04696 .04950	.509 .511 .514	0 0 0	.132 .166 .212
	15.00	3585	6936	117.8	.2390	.2470	.02694	.05212	.517	0	.278
			'n	0.	•						
<	sie										

Conversion with

Length for calcul. LOS = 106.360 m	Seawtemp. = 15.0	deg C
CF acc. to ITTC, $CA = 0.189E-3$	NY = $1.1882E-6$	m27s
1+k = 1.000	RHO = 1025.9	kg/m3

NOTE: Trim (TETP) positive down by the stern ----- Sinkage (ZV) positive parallel immersion

Leidos

Report WP T5

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Mode1	5626-0002	20 Propeller	2288 / 2289		So	cale 24	1.384
Test No. Test Date	23-0254 e 19.04.2	1/23-0253 2023	Draught Displacement	=	9.906 13406	m m3	
Model cor	ndition:	with POD nos propeller tur bow thruster	. 222/223-5500 rning inward over tunnel open	the	top when	going	ahead

HULL EFFICIENCY ELEMENTS

Full scale ship without correction of wake and propeller efficiency

	V	EN			WET	стлц	ETAO			СТ	')
	[KTS]	[-]	[-]	[-]	[-]	[-]	[-]	[-]		L. L.J	
	6.00 8.00 10.00	.0956 .1274 .1593	.777 .778 .771	.003 .016 .029	.060 .066 .072	1.061 1.054 1.046	.503 .503 .505	.930 .940 .951	4,16 . 490 . 505	.393 .392 .410	
	11.00 12.00 13.50	.1753 .1911 .2150	.766 .761 .750	.033 .037 .042	.074 .076 .079	1.044 1.043 1.04	507 . 709 512	.961 .963 .966	.509 .511 .514	.424 .441 .473	
	15.00	.2390	.739	.050	.003	1.036	.514	.971	.517	.509	
			~	1 /							
		5	9.								
	ni										
(6)										

REMARK: The coefficients are valid for identity of KT.

Hamburgische	
Schiffbau-	
Versuchs-	
Anstalt GmbH	

Leidos

Report WP T6

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Mode1 562	6-00020	Propel	ler 228	8 / 2289)		S	cale 24.3	384
Test No. 23 Test Date 19	3-0254/2 9.04.202	3-0253 3		Draught Displac	ement	=	9.906 13406	m m3	
Model condit	ion: wi pr bo	th POD opeller w thrus	nos. 22 turnin ter tun	2/223-55 g inwarc nel oper	00 lovert	he to	p when	going al	nead
			TR	IAL PRED	ICTION				
		I	Head wi	nd 0.000	m/s ^	BF 0			5
	V [KTS]	FN [-]	RT [KN]	T [KN]	PE [KW]	PD [KW]	ETAD [-]		
	$\begin{array}{c} 6.00 \\ 8.00 \\ 10.00 \end{array}$.0956 .1274 .1593	66 115 183	66.5 116.4 188.4	205 471 941	375 861 1701	.515 .518 513	46.2 61.1 76.6	
	11.00 12.00 13.50	.1753 .1911 .2150	226 277 371	234.0 287.6 387.4	1281 1709 2579	2300 3063 4604	.557 .558 .560	84.6 92.7 105.4	
	15.00	.2390	484	509.4	3736	6662	.561	118.4	
Preliv	nin	ar	7						
Conversion w DRT, relate	ith ed to RF	=	0.0 %	R	HO air.	=	1.225	5 kg/m3	
AV TRIAL CONDIT	 IONS: C1	= ean smo	632 m oth hul	∠ C 1, deep	.AA calm wa	= ter,	0.85		
	no	curren	t	•		-			

Leidos

| Report | WP | T7

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Mode1	5626-00020	Propeller	2288 / 2289		S	cale	24.384
Test No. Test Dat	23-0254/2 e 19.04.202	3-0253 3	Draught Displacement	= =	9.906 13406	m m3	
Model co	ndition: wi	th POD nos.	222/223-5500				

propeller turning inward over the top when going ahead bow thruster tunnel open

HULL EFFICIENCY ELEMENTS Trial conditions, Head wind 0.000 m/s ^ BF 0

[V KTS]	FN [-]	ADVC [-]	THDF [-]	WFT [-]	ETAH [-]	ETAO [-]	ETAR [-]	ETAD [-]	Ст! L-]	
1	6.00 8.00 0.00	.0956 .1274 .1593	.784 .784 .778	.003 .016 .029	.047 .053 .059	1.046 1.040 1.032	.560 .560 .562	.930 .940 .151	515 .540 .533	.401 .401 .419	
1 1 1	1.00 2.00 3.50	.1753 .1911 .2150	.773 .767 .757	.033 .037 .042	.061 .063 .066	1.030 1.028 1.025	503 . 764 565	.961 .963 .966	.557 .558 .560	.432 .449 .481	
1	5.00	.2390	.746	. 050	.078	1.022	.565	.971	.561	.516	
		5	31	3							
(el	111										

REMARK: The coefficients are valid for identity of KT.

Corrections: (1-WFTS)/(1-WFTM) = 1.014

Hamburgische	
Schiffbau-	
Versuchs-	
Anstalt GmbH	

 $11.00 \\ 12.00 \\ 13.50$

15.00

Preliminary

.1753 .1911

.2150

.2390

Leidos

Report WP T8

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Model 5	626-00020	Propel	ler 228	8 / 2289	9		Sc	ale 24.	384
Test No. Test Date	23-0254/2 19.04.202	23-0253 23		Draught Displac	t cement	= 9 = 1	.906 3406	m m3	
Model cond	ition: w [.] pi bo	ith POD ropeller ow thrus	nos. 22 turnin ter tun	2/223-55 ng inward nel open	500 d over t n	he top:	when	going a	ihead
			SER	VICE PRE	DICTION	I			
A	llowance =	= 15.0	% on PD)-trial	(Head w	vind 0.	000 m/	s ^ BF	0)
	V [KTS]	FN [-]	RT [KN]	T [KN]	PE [KW]	PD [KW]	ETAD [-]	N [RPN]	2.0
	$\begin{array}{c} 6.00 \\ 8.00 \\ 10.00 \end{array}$.0956 .1274 .1593	77 133 212	77.0 134.8 217.8	237 546 1088	432 990 1957	.549 .551 553	47.5 62.9 78.9	

270.3 331.7 445.9

585.

1479 1972 2.168

4291

.559 .560

.561

.560

87.1 95.5

108.6

122.1

2645 3522

5295

7661

261 319 427

556

Leidos

Report WP T9

Prepared by cs Date 20.04.2023

Model Tests for an ARV

Mode1	5626-0002	20 Propeller	2288 / 2289		S	cale 24	1.384
Test No. Test Date	23-0254 19.04.2	4/23-0253 2023	Draught Displacement	=	9.906 13406	m m3	
Model con	dition:	with POD nos. propeller tur bow thruster	222/223-5500 ning inward over tunnel open	the	top when	going	ahead
	HUI	L EFFICIENCY	ELEMENTS UNDER SE	RVIC	E CONDIT	IONS	

	Allowar	nce =	15.0 %	on PD	trial	(Hea	d wind	0.000	m/s ^	BF 0)	6
	V [KTS]	FN [-]	ADVC [-]	THDF [-]	WFT [-]	ETAH [-]	ETAO [-]	ETAR [-]	etad [-]	Ст. Г-]	
	6.00 8.00 10.00	.0956 .1274 .1593	. 762 . 762 . 755	.003 .016 .029	.047 .053 .059	1.046 1.040 1.032	.564 .564 .565	.935 .949 .151	5.19 . 551 . 556	.464 .464 .485	
	11.00 12.00 13.50	.1753 .1911 .2150	. 751 . 745 . 734	.033 .037 .042	.061 .063 .066	1.030 1.028 1.025	505 . 765 505	.961 .963 .966	.559 .560 .561	.499 .518 .553	
	15.00	.2390	.723	.050	.070	1.022	.565	.971	.560	.593	
			31	1/							
(e	in										

REMARK: The coefficients are valid for identity of KT.

Corrections: (1-WFTS)/(1-WFTM) = 1.014

5.2 Result Tables - T= 9.906 m - Resistance and Propulsion (Recalculation P2621/2622

FILES WP230254.DAT Str1316 Str1290

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Prep	ا ared by cs	_eidos s Date	12.05.202	23	Report WP-2023-029 T11	
		Model 1	Tests fo	r an ARV		I	
Model 5626-00)020 Full Model	Scale Prop Test Prop	beller 2 Deller 2	621 / 2622 288 / 2289	2	Scale 24.384	
Test No. 23-02 Test Date 19.04	254/23-0253 1.2023	[[Draught Displace	= ment =	9.906 m 13406 m	3	
Model condition: with POD nos. 222/223-5500 propeller turning inward over the top when going ahead bow thruster tunnel open							
	FAI	RED MODEL	DATA (P	ROPELLER 2	2288)	6	
V [m/s]	FN R] [-]	N*E-6 R1 [-] [M	ΓΜ Ν Ν] [1/	T s] [N]	Q [NM]	FD	
.625 .833 1.042	5 .0956 3 .1274 2 .1593	2.414 6. 3.216 10. 4.022 16.	.31 3. .71 5. .69 6.	78 2.13 00 3.72 27 6.03	1126 .1519 .3065	2 07 3.39 4.99	
1.146 1.250 1.406	5 .1753) .1911 5 .2150	4.425 20. 4.824 24. 5.428 32.	.38 6. .60 7. .26 8	92 .49 59 .22 6 2.45	.3752 .4557 .6017	5.88 6.83 8.39	
1.563	.2390	6.033 41.	.27 9	70 16.42	.7740	10.07	
		JV)				
	ina						
nile							
Pro							

Conversion with values for model		
Length for calcul. $LOS = 4.362 \text{ m}$ CF acc. to ITTC, CA = 0.189E-3 1+k = 1.000 Wetted surface = 5.54 m2	Tankwtemp. = 15.3 NY = 1.1300E-6 RHO = 999.0	deg C m2/s kg/m3
Hamburgische		
--------------	--	
Schiffbau-		
Versuchs-		
Anstalt GmbH		

Leidos

Prepared by cs Date 12.05.2023

Model Tests for an ARV

Model 5626-00020 Full Scale Propeller 2621 / 2622 Scale 24.384 Model Test Propeller 2288 / 2289

Test No.	23-0254/23-0253	Draught	=	9.906	m
Test Date	19.04.2023	Displacement	=	13406	mЗ

Model condition: with POD nos. 222/223-5500 propeller turning inward over the top when going ahead bow thruster tunnel open

RESISTANCE AND PROPULSION COEFFICIENTS (PROPELLER 2288) Full scale ship without correction of wake and propeller efficiency RN*E-8 CR*E3 CF*E3 V FN CT*E3 ADVCV KQ [KTS] [-] [-] [-] ٢-٦ [-] [-] [-] .02466 2.764 1.922 1.808 3.918 .8274 .0956 6.00

	$8.00 \\ 10.00$.1274 .1593	3.683	2.015	1.740	3.809 3.894	.83.1 .8307	.0931 .0959	.02438
	11.00 12.00 13.50	.1753 .1911 .2150	5.067 5.524 6.216	2.125 2.268 2.545	1.668 1.650 1.625	3 933 4 107 4 359	.8278 .8235 .8146	.0978 .1002 .1046	.02449 .02476 .02526
	15.00	.2390	6.908	2.820	1.013	4.612	.8057	.1092	.02574
			5	Y					
		Ni	0.	•					
-									
61	0								
-									

 Conversion with

 Length for calcul. LOS = 106.360 m

 CF acc. to ITTC, CA = 0.189E-3

 1+k

 1+k

 1+k

 Seaw.-temp. = 15.0 deg C

 NY
 11882E-6 m2/s

 RHO
 1025.9 kg/m3

Hamburgis Schiffbau Versuchs Anstalt (sche J- GmbH		Prepare	L d by cs	eidos Date	12.05.20)23		Report WP-2023- T13	029
				Model T	ests fo	r an ARV				
Mode1	Model 5626-00020 Full Scale Propeller 2621 / 2622 Scale 24.384 Model Test Propeller 2288 / 2289									. 384
Test No. Test Date	23-02 e 19.04	254/23- 4.2023	0253	D D	raught isplace	= ment =	9.906 13406	m m3		
Model cor	ndition	: with prop bow	POD no eller t thruste	s. 222/ urning r tunne	223-550 inward 1 open	0 over the	top whe	n goi	ng ahead	
		POWER	AND PRO	PELLER	REVOLUT	IONS (PRO	OPELLER	2288)		
Fu	ll scale	e ship	without	correc	tion of	wake and	d propel	ler e	fficienc	y
V [KTS]	PE [KW]	PD [KW]	N [RPM]	FN [-]	RF/RT [-]	CTVOL [-]	CDVOL [-]	etad L J	T⊾TP [MIN]	ZV [M]
$6.00 \\ 8.00 \\ 10.00$	195 449 897	393 900 1777	45.9 60.8 76.2	.0956 .1274 .1593	.4613 .4566 .4338	.02289 .02225 .02274	.04611 .04456 .04507	.496 .498 .505	0 0 0	.024 .054 .107
$11.00 \\ 12.00 \\ 13.50$	1221 1632 2468	2400 3194 4799	84.1 92.2 104.9	.1753 .1911 .2150	.4189 .4017 .3728	02326 02199 02546	.04572 .04696 .04950	.509 .511 .514	0 0 0	.132 .166 .212
15.00	3585	6936	117.8	.2390	.3476	.02694	.05212	.517	0	.278
Pre	13.50 2468 4799 104.9 2150 3720 02546 04950 514 0 212 15.00 3585 6936 117.8 2390 3476 02694 05212 517 0 278									

Conversion with

Length for calcul. $LOS = 106.36$	50 m Seawtemp. = 15.0	deg C
CF acc. to ITTC, $CA = 0.189E$ -	3 NY = 1.1882E-6 I	m2/s
1+k = 1.00	$RH0 \dots = 1025.9$	kg/m3

NOTE: Trim (TETP) positive down by the stern ----- Sinkage (ZV) positive parallel immersion

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Hamburgische Leidos Schiffbau- Versuchs- Prepared by cs Date 12.05.2023 Anstalt GmbH							
		Model Tes	sts for a	n ARV		·		
Model 5626-00	Model 5626-00020 Full Scale Propeller 2621 / 2622 Scale 24.384 Model Test Propeller 2288 / 2289							
Test No. 23-02 Test Date 19.04	254/23-0253 1.2023	Dra Dis	aught splacemen	= t =	9.906 13406	m m3		
Model condition:	with POD r propeller bow thrust	nos. 222/22 turning in er tunnel	23-5500 nward ove open	r the 1	top whe	n goir	ng ahead	
	HULL EFFI	CIENCY ELE	EMENTS (P	ROPELLE	ER 2288)		
Full scale	e ship withou	it correct	ion of wa	ke and	propel	ler ef	ficturey	
V [KTS]	FN ADVC [-] [-]	THDF WF	-T ETAH -] [-]	ETAO [-]	ETAR [-]	ET^5 	СТН [-]	
6.00 8.00 10.00	.0956 .777 .1274 .778 .1593 .771	.003 .06 .016 .06 .029 .07	50 1.061 56 1.054 72 1.046	.503 .503 .505	.937 .954 .954	. 190 . 498 . 505	.393 .392 .410	
11.00 12.00 13.50	.1753 .766 .1911 .761 .2150 .750	.033 .07 .037 .07 .042 .07	74 1.044 76 1.04 79 1.041	.507 509 .j12	961 963 966	.509 .511 .514	.424 .441 .473	
15.00	.2390 .739	.050 L	3 1.036	.514	.971	.517	.509	
		1						
	inai							
nii								
Pren.								

REMARK: The coefficients are valid for identity of KT.

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Prepared by	Leidos cs Date	12.05.	2023	Re WI T:	eport -2023-029 15
	Model	Tests fo	or an AR	V	I	
Mode1 5626-00020	Full Scale Pr Model Test Pr	opeller 2 opeller 2	2621 / 2 2288 / 2	622 289	S	cale 24.384
Test No. 23-0254/2 Test Date 19.04.202	3-0253 3	Draught Displace	= ement =	9.90 1340)6 m)6 m3	
Model condition: wi pr bo	th POD nos. 22 opeller turnir w thruster tur	2/223-550 ng inward nel open)0 over th	e top wł	nen going	g ahead
	TRIAL PREDI Head wi	CTION (PF nd 0.000	ROPELLER m/s ^ B	2621) F 0		25
V [KTS]	FN RT [-] [KN]	T [KN]	PE [KW]	PD ET [KW] [TAD N [-] [RPI	Y.
6.00 8.00 10.00	.0956 66 .1274 115 .1593 183	66.5 116.4 188.4	205 471 941	331 758 1495	019 34 512 45 530 56	.1 .1 .5
11.00 12.00 13.50	.1753 226 .1911 277 .2150 371	234.0 287.6 387.4	1291 1709 2579	2018 .6 2681 .6 4016 .6	535 62 538 68 542 77	.3 .2 .3
15.00	.2390 484	5.9.4	3736	5791 .6	645 86	.7
* •	SUN	-				
imi						
Dle.						
Conversion with						
DRT, related to RF AV	$\dots = 0.0 \%$ $\dots = 632 m$	RH 12 CA	HO air VA	= 1.2 = 0.8	2255 kg. 35	/m3
TRIAL CONDITIONS: C1	ean smooth hul current	l, deep o	calm wat	er,		

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Prepai	Le red by cs	idos Date 12	2.05.20	23		Report WP-2023-029 T16		
		Model Te	sts for a	an ARV					
Mode1 5626-0	Model 5626-00020 Full Scale Propeller 2621 / 2622 Scale 24.384 Model Test Propeller 2288 / 2289								
Test No. 23-0 Test Date 19.0	254/23-0253 4.2023	Dr Di	aught splacemer	= nt =	9.900 1340	6 m 6 m3			
Model condition	Model condition: with POD nos. 222/223-5500 propeller turning inward over the top when going ahead bow thruster tunnel open								
	HULL EFFICIENCY ELEMENTS (PROPELLER 2621)								
	Trial cond	litions, H	ead wind	0.000	m/s ^ I	3F 0	25		
V [KTS]	FN ADVC [-] [-]	THDF W [-] [FT ETAH -] [-]	ETAO [-]	ETAR [-]	ET^5 [-]	СТН [-]		
6.00 8.00 10.00	.0956 .928 .1274 .928 .1593 .922	.003 .0 .016 .0 .029 .0	47 1.046 53 1.040 59 1.032	.636 .636 .639	.935 .954 .954	.519 .622 .630	.306 .306 .320		
11.00 12.00 13.50	.1753 .917 .1911 .911 .2150 .901	.033 .0 .037 .0 .042 .0	61 1.030 63 1.028 66 1.026	. 542 644 547	961 .963 .966	.635 .638 .642	.330 .343 .367		
15.00	.2390 .890	.050 l	0 1.022	.650	.971	.645	.394		
		1							
	ind'								
nin									
Prem									

REMARK: The coefficients are valid for identity of KT.

Corrections: (1-WFTS)/(1-WFTM) = 1.014

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Prepa	Lo red by cs	eidos Date	12.05.2	023	Report WP-2023-029 T17			
	Model Tests for an ARV								
Model 5626-00	0020 Full S Model	cale Prop Test Prop	eller 20 eller 22	621 / 26 288 / 22	22 89	Scale 24.384			
Test No. 23-02 Test Date 19.04	254/23-0253 4.2023	D D	raught isplace	= ment =	9.906 m 13406 m	3			
Model condition	: with POD - propeller bow thrus	nos. 222/2 turning ter tunne	223-5500 inward o l open) over the	top when g	oing ahead			
	SERVI	CE PREDIC	TION (PI	ROPELLER	2621)				
Allowa	nce = 15.0	% on PD-t	rial (I	Head win	d 0.000 m/s	A BE U			
[K]	V FN TS] [-]	RT [KN]	T [KN]	PE [KW] [PD ETAD KW] [-]	RPM			
6 8 10	.00 .0956 .00 .1274 .00 .1593	77 134 1 213 2	77.7 36.0 19.6	239 551 1097 1	380 872 719 601 632	34.9 46.2 57.9			
11 12 13	.00 .1753 .00 .1911 .50 .2150	263 2 322 3 430 4	72.4 34.2 49.0	1491 2 1.187 3 2988 4	820 .643 083 .644 619 .647	63.9 70.0 79.4			
15	.00 .2390	560 5	8.8	4319 6	661 .648	89.1			
	inar	1	,						
Prelli									

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Prepar	Leido ed by cs Da	s te 12.	05.202	23	-	Report WP-2023-029 T18		
	Model Tests for an ARV								
Model 5626-00	020 Full Sca Model To	ale Propelle est Propelle	r 2621 r 2288	/ 2622 / 2289)		Scale 24.384		
Test No. 23-02 Test Date 19.04	254/23-0253 4.2023	Draug Displ	ht acement	= ; =	9.906 13406	5 m 5 m3			
Model condition: with POD nos. 222/223-5500 propeller turning inward over the top when going ahead bow thruster tunnel open									
HULL EFF	CIENCY ELEME	NTS UNDER SE	RVICE C	CONDITI	ONS (F	ROPEL	LER 2621)		
Allowar	1Ce = 15.0 %	on PD-trial	(Head	lwind	0.000	m/s ´	`B⊢ u		
V [KTS]	FN ADVC [-] [-]	THDF WFT [-] [-]	ETAH [-]	ETA0 [-]	ETAR [-]	ET^5	CTH [-]		
6.00 8.00 10.00	.0956 .905 .1274 .905 .1593 .898	.003 .047 .016 .053 .029 .059	1.046 1.040 1.032	.646 .646 .648	.937 .954 .954	. 529 .631 .038	.357 .357 .373		
11.00 12.00 13.50	.1753 .894 .1911 .888 .2150 .877	.033 .061 .037 .063 .042 .066	1.030 1.023 1.026	. 549 651 . 552	.961 .963 .966	.643 .644 .647	.384 .398 .425		
15.00	.2390 .866	. 050 . 70	1.022	.654	.971	.648	.455		
Prelim	inan								

REMARK: The coefficients are valid for identity of KT.

Corrections: (1-WFTS)/(1-WFTM) = 1.014

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Le Prepared by cs	eidos Date 12.05.2023	Report WP T19
	Model Te	ests for an ARV	
Mode1 5626-00	0000		Scale 24.384
MAIN DIMENSIONS Length betw. waterl "submerg Breadth, water Draught, fore mean "aft Displacement, ", a Wetted surface ", wi Block coeffic Prismatic coe Waterline coe Centre of buo RATED POWER MO MODEL CONDITION TURBULENCE INDUC	OF SHIP perpendiculars LPP = ineLWL = gedLWL = gedBWL = TF = TM = TA = bareDISV = ppendedDISV = e, bareS = th appendagesS = ientCB = fficientCP = fficientCWP = yancyXB = CR: 19,000 kW (2x 9,50 Bare Hull - Bow bh CTION 2 sandstripe	108.720 m 106.360 m 24.400 m 9.906 m 13385 m3 3315 m2 m2 0.509 (based on 0.581 (" 0.826 (" 0.53% LPP ant of LP 0 kW)	P/2

5.3 Result Tables - T= 9.906 m - Resistance - Bare Hull

FILES WP230252.DAT

Hamburgische Schiffbau- Versuchs- Anstalt GmbH		Prepa	red by	Leidos cs Date	12.05.20	23	Repo WP T20	ort
	·		Mode1	Tests for	an ARV		·	
Mode1 5620	5-00000)					Scale 24	. 384
Test No. 23 Test Date 19	3-0252 9.04.20	23		Draught Displacem	= ent =	9.906 13385	m m3	
Model condit	ion: B	are Hull	- Bow	thruster t	unnel cl	osed		
FATRED I	MODEL D	ΑΤΑ		RESISTA	NCE COFF	FICIENT	S	
				Mo	del valu	les	-	
V [m/s]	FN [-]	RN*E-6 [-]	RTM [N]	CR*E3 [-]	CF*E3 [-]	CT*E3 [-]	CT/CF	
.625 .833 1.042	.0956 .1274 .1593	2.413 3.217 4.021	6.10 10.49 16.33	1.697 1.729 1.867	3.905 3.691 3.538	5.601 5.420 5.424	1.134 1.469 1.528	.021 .071 .182
1.146 1.250 1.406	.1752 .1911 .2150	4.423 4.826 5.429	19.95 24.11 31.63	1.981 2.121 2.397	3.475 3.419 9.346	5.456 5.540 5.743	1.570 1.620 1.716	.271 .390 .639
1.563	.2389	6.032	40.65	2.095	3.282	5.977	1.821	.993
Conversion w	ith val	ues for	model	m Tanku	tomp	- 15 2	d	
Length for (CF acc. to 1 1+k Wetted surfa	Calcul. ITTC, 	LUS = CA = 0 = =	4.362 189E-3 1.000 5.58	m Tankw NY RHO. m2	тетр. 	= 15.3 = 1.130 = 999.	de 0E-6 m2, 0 kg,	≩g L ∕s ∕m3

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	Leidos Prepared by cs Date 12.05.2023	Report WP T21
	Model Tests for an ARV	

Scale 24.384

Test No. Test Date	23-0252 19.04.2023	Draught Displacement	=	9.906 13385	m m3	
		I				

Model condition: Bare Hull - Bow thruster tunnel closed

Model 5626-00000

			TES	ST RESU	LTS				
			Full	scale	ship				
	V [KTS]	FN [-]	RT [KN]	PE [KW]	CTVOL [-]	TETP [MIN]	ZV [M]	2	5
	$6.00 \\ 8.00 \\ 10.00$.0956 .1274 .1593	60 105 169	185 434 867	.02172 .02151 .02202	0 -1 2	. 917 073 . 195		
	$11.00 \\ 12.00 \\ 13.50$.1752 .1911 .2150	209 257 345	1183 1584 2399	.02257 .02329 .023476	-2 -2 -3	.132 .151 .207		
	15.00	.2389	454	3500	02639	-3	.273		
prelin	nin	an							
Conversion with Length for ca CF acc. to IT 1+k	h - 1cul. LO TC, C	S = 106 A = 0.18 . = 2	5.360 m 39E-3 1.000	Sea NY RHO	wtemp. 	= 15.0 = 1.18 = 1025	82E-6 .9	deg C m2/s kg/m3	

NOTE: Trim (TETP) positive down by the stern Sinkage (ZV) positive parallel immersion

Hamburgische Schiffbau- Versuchs- Anstalt GmbH	L Prepared by cs	eidos Date 12.05.2023	Report WP T22
	Model T	ests for an ARV	
Model 5626-00000			Scale 24.384
Test No. 23-0252 Test Date 19.04.202	D 3 D	raught = 9 isplacement =	9.906 m 13385 m3
Model condition: Ba	re Hull - Bow th	ruster tunnel close	ed
	TRIA	L PREDICTION	
	Head wind	0.000 m/s ^ BF 0	
	V FN [KTS] [-]	[KN] [KW] [
	6.00 .0956 8.00 .1274 10.00 .1593	63 194 .022 111 456 .022 177 912 .023	286 264 16
	11.00 .1752 12.00 .1911 13.50 .2150	220 1242 .023 269 1662 .024 361 2503 .025	371 442 590
	15.00 .2389	474 3057 .023	753
.	313		
innii			
orell"			
X			
Conversion with DRT, related to RF	= 0.0 %	RHO air =	1.2255 kg/m3
AV	$\dots = 632 \text{ m}2$	CAA =	0.85
····· NO	current	acep curin water,	

5.4 System Open Water Characteristic of Propeller 2288/89 and Pod 222/223

Propeller number	2288/2289
Propeller file	STR1316
Diameter in m	4.877
Pitch ratio (mean)	0.985
Hub diameter ratio	0.381
Disc area ratio	0.553
Number of blades	4

											6
0pe	en Water	Test Val	lues	0pe	n Water	Test Va	lues	0pe	n Water	T(st)/a	ltes
				correc	ted for	the Rn	of the	corr	ected 10	n 111 :	cale
				Propul	sion Tes	st of mo	. 5626				
J	KT	10KQ	ETA	J	KT	10KQ	ETA	J	<u> </u>	10KQ	ETA
0.00	0.4294	0.6206	0.000	0.00	0.4273	0.6217	0.000	0.00	1.4332	0.6128	0.000
0.05	0.4128	0.5953	0.055	0.05	0.4107	0.5964	0.055	0.05	0, 167	0.5875	0.056
0.10	0.3954	0.5700	0.110	0.10	0.3934	0.5711	0.110	0.10	0.3992	0.5622	0.113
0.15	0.3766	0.5447	0.165	0.15	0.3746	0.5458	0 154	0.15	0.3803	0.5369	0.169
0.20	0.3560	0.5194	0.218	0.20	0.3541	0.5205	0.217	0.20	0.3597	0.5116	0.224
0.25	0.3337	0.4942	0.269	0.25	0.3318	0. +953	0 257	0.25	0.3373	0.4863	0.276
0.30	0.3102	0.4691	0.316	0.30	0.3083	0 4702	0.313	0.30	0.3137	0.4611	0.325
0.35	0.2859	0.4441	0.359	0.35	(1.28-0	0 4452	0.355	0.35	0.2894	0.4361	0.370
0.40	0.2615	0.4193	0.397	0.40	0 259	0.4204	0.393	0.40	0.2650	0.4112	0.410
0.45	0.2374	0.3946	0.431	0_45	0.2355	0.3957	0.426	0.45	0.2409	0.3864	0.446
0.50	0.2139	0.3698	0.460	1.50	0.2120	0.3709	0.455	0.50	0.2175	0.3616	0.479
0.55	0.1912	0.3451	0.485	0.55	0.1893	0.3462	0.479	0.55	0.1948	0.3367	0.506
0.60	0.1694	0.3202	<u>^.5.5</u>	0.60	0.1674	0.3213	0.498	0.60	0.1730	0.3117	0.530
0.65	0.1482	0.29/2	0.520	0.65	0.1462	0.2960	0.511	0.65	0.1520	0.2863	0.549
0.70	0.1274	0 2673	0.527	0.70	0.1253	0.2704	0.516	0.70	0.1313	0.2606	0.561
0.75	0.1060	0.2431	0.525	0.75	0.1047	0.2442	0.512	0.75	0.1109	0.2342	0.565
0.80	0. 1861	0.2161	0.507	0.80	0.0839	0.2172	0.492	0.80	0.0903	0.2071	0.555
CC 0	1.0353	0.1883	0.467	0.85	0.0626	0.1894	0.447	0.85	0.0694	0.1791	0.524
0.90	0.0432	0.1597	0.387	0.90	0.0408	0.1608	0.363	0.90	0.0478	0.1503	0.455
0.95	0.0206	0.1302	0.239	0.95	0.0180	0.1313	0.208	0.95	0.0254	0.1206	0.319
1.00	0030	0.0999	-	1.00	0056	0.1010	-	1.00	0.0021	0.0901	0.036
1.05	0273	0.0692	-	1.05	0301	0.0703	-	1.05	0221	0.0591	-
1.10	0521	0.0382	-	1.10	0551	0.0393	-	1.10	0466	0.0279	-

5.5 System Open Water Characteristic of Propeller 2621/22 and Pod 222/223

Propeller number	2621/2622
Propeller file	STR1290
Diameter in m	5.583
Pitch ratio (mean)	1.012
Hub diameter ratio	0.247
Disc area ratio	0.686
Number of blades	4

											6
0pe	n Water	Test Va	lues	0pe	n Water	Test Va	lues	0pe	n Water	T. st /a	ltes
				correc	ted for	the Rn	of the	corr	ected 10	n 111 s	cale
				Propul	sion Te	st of mo	. 5601				
J	KT	10KQ	ETA	J	KT	10KQ	ETA	J	<u> </u>	10KQ	ETA
0.00	0.5587	0.8235	0.000	0.00	0.5568	0.8252	0.000	0.00	1.5626	0.8146	0.000
0.05	0.5346	0.7925	0.054	0.05	0.5327	0.7942	0.053	0.05	0.5385	0.7835	0.055
0.10	0.5102	0.7614	0.107	0.10	0.5084	0.7631	0.106	0.10	0.5140	0.7524	0.109
0.15	0.4853	0.7303	0.159	0.15	0.4835	0.7320	0 1 28	0.15	0.4890	0.7213	0.162
0.20	0.4598	0.6991	0.209	0.20	0.4581	0.7008	0.)00	0.20	0.4634	0.6901	0.214
0.25	0.4338	0.6680	0.258	0.25	0.4321	0.6097	0.257	0.25	0.4374	0.6589	0.264
0.30	0.4076	0.6371	0.305	0.30	0.4059	0 6385	0.303	0.30	0.4111	0.6280	0.313
0.35	0.3813	0.6063	0.350	0.35	6.3756	0 6081	0.348	0.35	0.3847	0.5971	0.359
0.40	0.3552	0.5759	0.393	0.40	0 3535	0.5777	0.390	0.40	0.3586	0.5666	0.403
0.45	0.3296	0.5458	0.432	0.45	0.3280	0.5476	0.429	0.45	0.3330	0.5364	0.445
0.50	0.3045	0.5160	0.470	. 50	0.3029	0.5178	0.465	0.50	0.3079	0.5065	0.484
0.55	0.2799	0.4864	0.50.	0.55	0.2782	0.4882	0.499	0.55	0.2833	0.4768	0.520
0.60	0.2558	0.4568	1.5.5	0.60	0.2541	0.4586	0.529	0.60	0.2592	0.4471	0.554
0.65	0.2320	0.4272	0.562	0.65	0.2304	0.4290	0.555	0.65	0.2355	0.4173	0.584
0.70	0.2086	0 3972	0.585	0.70	0.2069	0.3991	0.578	0.70	0.2122	0.3872	0.610
0.75	0.1852	1668	0.603	0.75	0.1835	0.3686	0.594	0.75	0.1888	0.3566	0.632
0.80	0.1615	0.3356	0.613	0.80	0.1598	0.3375	0.603	0.80	0.1653	0.3252	0.647
0 So	1.127	0.3035	0.614	0.85	0.1359	0.3054	0.602	0.85	0.1416	0.2929	0.654
0.90	0.1134	0.2704	0.601	0.90	0.1116	0.2723	0.587	0.90	0.1174	0.2596	0.648
0.95	0.0886	0.2362	0.567	0.95	0.0867	0.2381	0.550	0.95	0.0927	0.2252	0.622
1.00	0.0630	0.2010	0.499	1.00	0.0611	0.2029	0.479	1.00	0.0672	0.1898	0.564
1.05	0.0369	0.1650	0.373	1.05	0.0349	0.1670	0.349	1.05	0.0412	0.1536	0.449
1.10	0.0103	0.1285	0.140	1.10	0.0082	0.1306	0.110	1.10	0.0148	0.1168	0.222

Appendix A

Performance and Analysis of Ship Powering Tests

J.DR5 (HSVA Standard Correlation Method)

- 1. Correlation Factors and Physical Properties
- 2. **Test Procedure**
- 3. Measured Model Values in Non-dimensional Form
- 4. Elementary Test Analysis (Without Consideration of Scale Effects)
- J. Trial Prediction C List of Symbols Trial Prediction including Consideration of Scale Effects

1. Correlation Factors and Physical Properties

The tests and their analysis (which will be briefly described in the following sections) are carried out in accordance with Froude's method, i.e. the total resistance is split up into a frictional and a residual component.

The overall submerged length is used as the reference length for both the Reynolds and Froude numbers. The frictional coefficient is calculated according to the 1957 ITTC-Line:

Frictional Resistance Coefficient (Model):

$$C_{Fm} = \frac{0.075}{(\log R_{nm} - 2)^2}$$
Frictional Resistance Coefficient (Ship):

$$C_F = \frac{0.075}{(\log R_n - 2)^2}$$
Moreover, the analysis is based on the following physical properties:
acceleration due to gravity: $g = 9.80665 \text{ m/s}^2$
density of scavator (15 deg C): $\rho = 1025.9 \text{ kg/m}^3$
kinema ic vn cosity of seawater: $v = 1.1882*10^6 \text{ m}^2/\text{s}$
den the onder: $\rho_A = 1.2255 \text{ kg/m}^3$

The density and kinematic viscosity of the tank water are calculated based on the actual water temperature measured during the tests.

(3)

2. Test Procedure

The model tests relevant to ship powering are carried out in HSVA's large towing tank, which has a length of 300 m, a breadth of 18 m and a depth of 6 m.

The towing carriage is electronically controlled so that, following a short acceleration phase, the selected carriage speed is kept constant during the actual measuring period before decelerating and stopping. The towing carriage is equipped with a computerized data recording and processing system.

During resistance tests the ship model is towed by means of a thin wire which is connected to a load cell mounted inside the model. The tow force measured at the load cell is identical to the resistance of the model. A guide system keeps the model on a straight course while allowing free trim and sinkage.

During the propulsion tests the ship model is driven by its own propeller(s) powered by an electric motor. In order to compensate for the model's increased surface friction (compared with that of the ship) it is additionally towed by a thin wire during the propulsion test. The towing force which is applied is calculated as a function of the model's speed according to:

$$F_{\rm D} = \rho_{\rm m} / 2 \cdot V_{\rm m}^{2} \cdot S_{\rm m} \cdot (C_{\rm Fm} - C_{\rm F} - C_{\rm A})$$

The correlation allowance C_A is a function of the vessel's kingly and its block coefficient. The C_A value used is stated at the bottom of the relevant tables of results.

Prior to starting the measurements of thrus and or gree in the propeller shaft(s), the propeller revolutions are adjusted so that the speed of the elf propelled model matches the pre-selected carriage speed.

The recording of the propulsion test data is done with electronic counters and dynamometers with strain gauges.

For both the resistance and the propulsion tests the individual test runs are carried out for different speeds spaced non-owly enough to provide sufficient accuracy over the requested speed range.

The trim angle θ and the sinkage z_V are recorded to better understand the vessel's resistance and propulsion behaviour.

3. Measured Model Values in Non dimensional Form

The following coefficients are calculated from the data acquired during the model tests.

Froude Number:

$$F_n = \frac{V}{\left(g \cdot L_{OS}\right)^{0.5}} \tag{4}$$

Reynolds Number:

$$R_{n} = \frac{V \cdot L_{OS}}{\nu}$$
Residual Resistance Coefficient:

$$C_{R} = C_{Tm} \cdot C_{Fm}$$
Frictional Resistance Coefficient:

$$C_{T} = \frac{R_{T}}{\rho/2 \cdot V^{2} \cdot S} = C_{R} + C_{F} + C_{A}$$
(7)
Ship Speed Advance Coefficient:

$$J_{V} = \frac{V}{n \cdot D}$$
(8)
Thrust Coefficient:

$$V = \frac{T}{\rho \cdot n^{2} \cdot D^{4}}$$
(9)

Torque Coefficient:

$$K_Q = \frac{Q}{\rho \cdot n^2 \cdot D^5}$$
(10)

(12)

(13)

(14)

4. Elementary Test Analysis (Without Consideration of Scale Effects)

The conversion of the measured model values to those of the full scale ship is first performed without corrections according to the following equations (Froude scaling):

Speed:

$$\mathbf{V} = \mathbf{V}_{\mathrm{m}} \cdot \boldsymbol{\lambda}^{0.5} \tag{11}$$

Thrust:

$$\mathbf{T} = \mathbf{T}_{\mathrm{m}} \cdot \boldsymbol{\lambda}^{3} \cdot \boldsymbol{\rho} / \boldsymbol{\rho}_{\mathrm{m}}$$

Torque:

$$Q = Q_m \cdot \lambda^4 \cdot \rho / \rho_m$$

Effective Power:

$$Q = Q_{m} \cdot \lambda^{4} \cdot \rho / \rho_{m}$$

we Power:
$$P_{E} = R_{T} \cdot V = (R_{Tm} - F_{D}) \cdot V_{m} \cdot \lambda^{3.5} \cdot \rho / \rho_{m}$$

Power delivered at Propeller:

$$P_{\rm D} = 2\pi \cdot \mathbf{n} \cdot \mathbf{Q} = 2\pi \cdot \mathbf{n}_{\rm m} \cdot \mathbf{Q}_{\rm m} \cdot \lambda^{3.5} \cdot \rho \cdot \rho_{\rm m}$$
(15)
ations:

$$\mathbf{n} = \mathbf{n}_{\rm m} \cdot \lambda^{-0.5}$$
(16)

Revolu

$$\mathbf{n} = \mathbf{n}_{\mathrm{m}} \cdot \boldsymbol{\lambda}^{-0.5}$$

Blockage is accounted for by applying the equation of continuity without considering the deformation of the free water surface. Due to the large cross section of HSVA's towing tank, this method is sufficiently accurate.

speed, power and propeller revolutions thus determined are compiled in the tables of results Th separately for each test condition. In these tables the Froude number F_n and the ratio of frictional resistance to total resistance R_F / R_T are given as well as:

Resistance Displacement Coefficient:

$$C_{T\nabla} = \frac{R_T}{\rho / 2 \cdot V^2 \cdot \nabla^{2/3}}$$
(17)

Power Displacement Coefficient:

$$C_{\rm D\nabla} = \frac{P_{\rm D}}{\rho / 2 \cdot V^3 \cdot \nabla^{2/3}}$$
(18)

Propulsive Efficiency:

$$\eta_{\rm D} = \mathbf{P}_{\rm E} / \mathbf{P}_{\rm D} \tag{19}$$

In a following table all hull efficiency elements are listed for the same Froude numbers and under the same conditions, i.e. without any further corrections. These are:

Advance Coefficient:

(26)

Relative Rotative Efficiency:

$$\eta_{\rm R} = \frac{K_{\rm Q\,(open\,\,water\,test)}}{K_{\rm Q\,(propulsio\,\,n\,\,test)}}$$
(25)

and also

Thrust Loading Coefficient:

$$C_{\rm Th} = \frac{T}{\rho / 2 \cdot V_{\rm A}^2 \cdot D^2 \cdot \pi / 4}$$

In the elementary analysis the wake fraction and the propeller efficiency are determined as unin thrust identity. The propeller open water characteristics are corrected for the friction under rolly turbulent flow conditions at the Reynolds number of the model propeller during the propulsion test. This correction takes into account that the propeller influx has a higher degree of the balence in the "behind" condition than in "open water"

5. Trial Prediction including Consideration of Scale Effects

The added resistance of the zinc anodes, hull roughness and small openings (which are typical of real ships but which are not modelled) are accounted for in the correlation allowance C_A . For larger appendages and/or hull openings not present on the model, an allowance ΔR_T (related to the frictional resistance R_F) is made. Its value is stated at the bottom of the relevant table for the trial prediction. Furthermore, the air resistance of the superstructure and hull R_{AA} is estimated based on the relative velocity of the wind V_R and the area A_V exposed to it.

Air Resistance:

$$\mathbf{R}_{AA} = \rho_A / 2 \cdot \mathbf{V}_R^2 \cdot \mathbf{A}_V \cdot \mathbf{C}_{AA}$$

The effective power under trial conditions is:

$$\mathbf{P}_{\mathrm{E}} = (\mathbf{R}_{\mathrm{T}} + \Delta \mathbf{R}_{\mathrm{T}} + \mathbf{R}_{\mathrm{AA}}) \cdot \mathbf{V}$$

The next step in the analysis considers Reynolds number scale effects of the v ke as well as on the propeller efficiency. The respective corrections are based on the following ecsemptions:

- (a) The thrust deduction fraction t determined for the model is the same as for the full scale ship.
- (b) The relative rotative efficiency η_R will not do fer between model and full scale propeller.
- (c) The wake fraction (being lower for the ship due to the higher Reynolds number) can be determined by a constant correct on factor $(1-w / 1-w_m)$, kept constant over the whole speed range. (This factor is stated, t the bottom of the respective tables).
- (d) The open water efficiency η_0 of the full scale propeller is greater than that of the model propeller because of scale effect on the viscous drag of the blades. The respective correlation is done by nears of the Strip method according to Streckwall, which has been described in brief in the 2,2012 issue of HSVA's newsletter NewsWave.

Sec also:

Streckwall, H. Greitsch, L. and Bugalski, T.: 'Development of a Strip Method Proposed to Serve as a New Standard for Propeller Performance Scaling', Ship Technology Research Vol. 60, Nr.2, 2013

The propeller revolutions of the ship differ from those calculated by equation (16) due to the relatively lower wake the higher propeller loading as well as the higher efficiency of the full scale propeller compared to that of the model. The correct number of revolutions is determined using the following procedure:

The dimensionless ratio $[K_T/J^2]_B$, which does not include the unknown number of revolutions, is calculated from the data derived from the propulsion test, i.e. from the "behind" condition according to:

$$\left[\frac{K_{T}}{J^{2}}\right]_{B} = \frac{T}{\rho \cdot V_{A}^{2} \cdot D^{2}} = \frac{T_{m}}{\rho_{m} \cdot V_{Am}^{2} \cdot D_{m}^{2}} \cdot \left[\frac{1 - w_{m}}{1 - w}\right]^{2} \cdot \frac{R_{T} + \Delta R_{T} + R_{AA}}{R_{T}}$$
(29)

The factor $[(1-w_m) / (1-w)]^2$ accounts for the relative smaller wake of the full scale ship compared with that of the model and the factor $[(R_T + \Delta R_T + R_{AA}) / R_T]$ for the higher propeller loading under trial conditions. The equation implies the identity of the thrust deduction factors for model and ship.

The actual advance ratio J is determined by interpolating in the $(K_T / J^2)_0$ versus J curve using the $(K_T / J^2)_B$ value. For this step the full scale open water characteristic including corrections is ased. Subsequently the actual number of revolutions and power to be delivered at the propeller are calculated from the following expressions:

$$n = \frac{V \cdot (1 - w)}{D \cdot J}$$

$$K_{QB} = K_{Q0} / \eta_R$$
(30)
$$P_D = 2\pi \cdot n \cdot Q = 2\pi \cdot \rho \cdot n^3 \cdot D^5 \cdot K_{QB}$$
(32)

 K_{QB} is the torque coefficient of the full size prove ever(s) for the behind condition.

In the standard HSVA extrapolation method a hull roughness of 150 microns is taken into account. For hull roughness values other than 150 microns the propulsion data for the full scale ship is calculated to include a difference preficient resistance ΔC_{F_R} in addition to the standard ITTC friction coefficient equation (2).

$$\Delta C_{F_{F}} = C_{F_{R}} - C_{F_{R,KR=150}}$$
(33)

The modified frictional resistance coefficients used in equation (33) are calculated according to the following empirical HSVA formula:

$$C_{F_{R}} = 0.075 / [\log(Rn/(1+0.0011\frac{K_{R}}{L}Rn)) - 2]^{2}$$
(34)

with

K_R average hull roughness [m]

L ship length [m]

6. List of Symbols

The following list shows some relevant ITTC standard symbols and their computer variable names.

Symbol in Report	Computer Symbols	Symbol Name
Δ.,	ΔV	Area Exposed to Wind
		Correlation Allowance Coefficient
	CAA	Air Resistance Coefficient
	CDVOI	Power-Displacement Coefficient
C _{D⊽}	CE	Frictional Basistance Coefficient
C _F	CP	Pasiduary Pasistance Coefficient
C_R	CT	Total Pasistance Coefficient
C _T	СТИ	Thrust Loading Coefficient
C _{Th}	CTIO	Pagistanga Displacement Coofficient
∇	DISV	Displacement Volume
D	DP	Propeller Diameter
- F _D	FD	Towing Force in Propulsion Test
F _n	FN	Froude Name
g	G	Acc de ation due to Gravity
J	ADVC	Propener Advance Coefficient
J_v	ADVCV	Snip Advance Coefficient
K _Q	КQ	Torque Coefficient
K _T	KT	Thrust Coefficient
Los	LOT	Overall Submerged Length
n	N	Propeller Revolutions per Minute
P _D	PD	Delivered Power at Propeller
P _F	PE	Effective Power
Q	Q	Torque
R _{AA}	RAA	Wind Resistance
R _F	RF	Frictional Resistance
R _n	RN	Reynolds Number
R _T	RT	Total Resistance
ΔR_T	DRT	Additional Resistance
S	S	Wetted Surface
Т	Т	Thrust
t	THDF	Thrust Deduction Fraction

<u>Symbol in Report</u>	Computer Symbols	Symbol Name
V	V	Speed
V _A	VA	Speed of Advance of Propeller
V _R	VR	Relative Wind Velocity
W	WFT	Taylor Wake Fraction
$Z_{\rm V}$	ZV	Sinkage of Ship
η_D	ETAD	Propulsive Efficiency
$\eta_{\rm H}$	ETAH	Hull Efficiency
η_{O}	ETAO	Open-Water Propeller Efficiency
η_R	ETAR	Relative Rotative Efficiency
θ	TETP	Angle of Trim
λ	SCALE	Ship-Model Scale Ratio
ν	NU	Kinematic Viscosity
ρ	RHO	Mass Density
ρ_A	RHOA	Mass Density of Air

Notes:

- Lis followed Lion values respectively. 1. All symbols followed with a subscript of either "O" or "B" are open-water or "behind" condition values respectively.
 - a ubscript "m" are Model values. Ship values are written

May, 2015

Appendix **B**

Model Tests with Azimuthing Drives

Procedure of Evaluation

In addition to the self-propulsion test itself, open water tests with the propeller only and also with the propeller/pod unit are used for the evaluation of Azimuth propulsion. During both the propulsion tests and the open water test with the propeller/pod unit the following quantities are measured:

- model speed
- propeller speed
- propeller torque
- system thrust

The test results are analysed according to the HSVA Standard Method, which it described in **Appendix A**, however with the following modifications:

- (a) The model appendage resistance (Azimuth drive resistance) is converted to full scale as described in section (e.3) below. The wetted surface of the pod housing is not taken into account when determining the towing force during the propulsion test.
- (b) As only the system thrust T_{sy} of the propellar of unit is measured, the hull efficiency elements are valid for the system thrust and no for he propeller thrust.
- (c) The thrust deduction fraction t is valcuated using the system thrust and the bare hull resistance according to:

- (d) The wake fraction we and the efficiencies η_R and η_O are determined using KT-identity (based on system thust T_{sy}). In addition to this w_O is also determined based on KQ-identity.
- (e) The properler/pod unit open water efficiency is corrected as follows:

 ΔKT_1 and ΔKQ_1 values corresponding to the propeller are determined by the strip method acc. to Streckwall (HSVA standard procedure).

- (e.2) The open water test results are corrected for Reynold's number of the propulsion test using the corresponding ΔKT_1 and ΔKQ_1 values as determined under (e.1) above. A further correction, ΔKT_2 is made to account for scale effects on the pod housing drag. This correction is done using a simplified strip method (Mewis/Praefke, 2003). The resulting open water values are used to account for the difference in Reynold's number between the open water test and the propulsion test. These corrected data are used for the determination of w_T and w_O and η_R .
- (e.3) The open water test results for the propeller/pod units are corrected also for full scale using the corresponding ΔKT_1 and ΔKQ_1 values as determined under (e.1) above. A further correction, ΔKT_2 is made to account for scale effects on the pod housing drag. The resulting open water characteristic is used for the full scale ship.

HSVA, May 2015

Appendix I

Load Variation Coefficients for Ship Speed Trials

7. General

According to revision 1.1 of the ITTC recommended procedures and guidelines 7.5-04-01-01.2 dated 2014, propulsive efficiency and shaft rate of speed and power trials are corrected based on the coefficients ξ_p , ξ_n and ξ_v obtained from load variation tests according to the following equations:

$$P_{DC} = P_{DM} - \frac{\Delta R_M \cdot v_{SM}}{\eta_{D0}} \cdot \left(1 - \frac{P_{DM}}{P_{DC}} \cdot \xi_p\right) \tag{1}$$

$$n_C = \frac{n_M}{\xi_n \cdot \frac{P_{DM} - P_{DC}}{P_{DC}} + \xi_v \cdot \frac{\Delta v}{v_{SM}} + 1}$$
(2)

8. Model test setup

The load variation model tests are carried out at the same draught as the planned see thial draught and at one speed similar to the predicted EEDI (75 % MCR) speed. The tested pred chould also be included in the standard resistance and self-propulsion test sequence. The had variation test consists of four self-propulsion test runs, each one at a different rate of resolution. The rates of revolution are selected such that:

$$\Delta R \approx [-0.1; 0; +0.1; +0.2] \cdot (F_D - F_X) \cdot 1^3 \frac{\rho_s}{\rho_m}$$
(3)

9. Dependency of propulsion efficiency with resistance increase

The fraction between the propulsion efficiency from the load variation test to the normal selfpropulsion test is plotted a a function of the added resistance fraction. The slope of the linear least squares fit curve corresponds to the factor $\xi_{p.}$

10. Dependency of shaft rate with power increase

The fraction between the change in shaft speed from the load variation test to the normal selfpropulsion test is plotted as a function of the added delivered power fraction. The slope of the linear least squares fit curve corresponds to the factor ξ_n .

11. Dependency of shaft rate with speed change

The shaft rate from the load variation is plotted as a function of the corresponding resistance. For other speeds, this trend is assumed to be parallel to that line and pass through the point determined in self-propulsion tests. The slope of the $\Delta n/n - \Delta v/v$ linear least squares fit curve corresponds to the factor ξ_v .

12. List of Symbols

The list of symbols used by the HSVA Standard Method is given as follows:

Symbol in Report	Symbol Name
F _D	Skin friction correction force as in self-propulsion test
F _X	External tow force measured during load variation test
n _C	Corrected rpm of the sea trial
n _M	Measured rpm during sea trial
P _{DC}	Delivered power corrected to ideal condition
P_{DM}	Measured delivered power during sea trial
V _{SM}	Ship speed
$\Delta \mathbf{R}$	Difference in (full scale) resistance
$\Delta \mathbf{R}_{\mathbf{M}}$	Resistance increase from external factors
$\Delta \mathbf{v}$	Difference in ship speed
$\eta_{{ m D}0}$	Propulsion efficiency coefficient in ideal condition
λ	Scale factor
ξn	Revolution overload factor
ξp	Power overload factor
ξv	Speed overload factor
$ ho_{ m m}$	Water density during model test
ρ_s	Full scale water density
December, 2015	00515

~~~~	
*	



## Appendix Z

Specification Of Large Towing Tank

(HSVA Facilities)

- General 1.
- Towing Carriage 2.
- Jn, Oldra Computerized Plana Motion Carriage (CPMC) 3.
- avemaker



),IDR

#### 1. General

#### The following tests can be performed in the large towing tank:

- resistance tests,
- self-propulsion tests (Continental or British method, bollard pull, hawser, ...),
- horizontal planar motion testing (Towing and tracking, CPMC),
- flow observation (paint and underwater TV),
- wake measurements,
- propeller open water tests,
- seakeeping tests (in regular or irregular waves),
- measurement of forces and pressures acting on hulls or offshore structures,
- rolling tests,
- mooring tests,
- static submarine tests,
- non-stationary submarine tests.

The dimensions of the tank are:

Length	300.00 п
Breadth	150 n
Depth	5.60 n

A general overview of the tank is given below:



Accordingly model size ranges of **2** - **12 m** can be tested.

The Models are either controlled by human operators or fully automatic by process control computers. The model tests and test results are digitally monitored and stored.



#### 2. Towing Carriage

The main carriage moves in longitudinal direction with four wheels over two rails at the edge of the large towing tank. Accordingly, the width of the main carriage is **18 m**. To ease operability and improve accessibility, the main carriage is supported by a sub carriage, moving in transverse direction.

With a total power of 560 kW, provided by 8 servo drives with 70 kW each, the towing carriage reaches a maximum speed of 10 m/s. The maximum acceleration is  $0.80 \text{ m/s}^2$  and the maximum deceleration is  $1.40 \text{ m/s}^2$ .

Towing Carriage max. speed	10.00 m/s	
Towing Carriage max. acceleration:	0.80 m/s ²	
Towing Carriage max. deceleration	1.40 m/s ²	
zed Planar Motion Carriage ((		Dr

## 3. Computerized Planar Motion Carriage (CPMC)

inal

The CMPC operates in conjunction with the towing carriage. It reaches a maximum longitudinal speed of 4.00 m/s and a maximum transverse speed of 1.9 m/s  $\lambda$  doitional the CMPC can reach a maximum yaw rate of 23 °/s.

CMPC max. speed, longi unital	4.00 m/s
CMPC max. speed, tran sverse	<b>1.90 m/s</b>
CMPC max. yaw rate	23 °/s

#### 4. Wavemaker

The large towing tank is equipped with two wave generators: an 18 meter wide hydraulic duplex flap type wwe generator at the end of the basin and a side wave generator with the appropriate ab orb r in the middle of the basin. To absorb the longitudinal waves, sparred wood gratings are instead at the trimming tank side.

The side wave generator is a Snake type wavemaker consisting of 80 flaps each of 0.5m in width, for beam and oblique waves in the range from 20° to 160° wave direction. Regular waves, irregular long- and short-crested seas, wave packets, user-defined wave trains and spectra can be generated. Various methods for wave generation are possible:

- regular waves, computer generated wave trains with chosen spectra,
- regular waves, wave packets and reproduction of measured wave trains,
- irregular waves, spectra composed of at least 100 single components (electromechanical).

The maximum wave height is **0.5 m**.

July 2020

### 10. Attachment 3 – HSVA Wake Survey Test Report (Reference 6)

Preliminary Design, Oldras

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GMBH

n

THE HAMBURG SHIP MODEL BASIN

QIDR5

Report WM-2023-009

3-D-Wake Measurement for an Antarctic Rescaler Vessel (ARV) Preliminary

HSVA Model No. 5626-00010

**Customer:** Leidos





## **Document Control Sheet**

Customer:	Leidos
Project:	Antarctic Research Vessel (ARV)
Contract No.:	617456
<b>Report No.:</b>	WM-2023-009
Title:	3-D-Wake Measurement for an Antarctic Research Vessel (ARV)
File:	617456-WM-2023-009.pdf

Rev.	Date	Reason for Issue	prepared	checked	anpirvet
-	22-06-2023	Final report	KLa	CS	NR

Summary:	A three-dimensional wake measurement was perforined for an Antarctic Re-
	search Vessel. The measurement was performed with HCVA model No. 5626-
	00010 - hull variant 11. A wake fraction of $y_{m,n} = 0.104$ was obtained which
	is lower than the value of the initial hull (VM-2022-018) and a more common
	value for a vessel with this propulsion concept and block coefficient.
	The axial velocity distribution shows a relatively wide zone of slightly deceler-
	ated flow in the upper inner quarkart of the propeller plane. In addition, a second
	wake peak occurs, but only at the outer radii; it has to be noticed that the two out-
	ermost radii are larger than the propeller disc itself. The flow is generally directed
	inwards. The wa'e field is essentially relatively smooth and nearly undisturbed.
Keywords:	Three-th new stonal wake measurement, Antarctic Research Vessel
Preli	

i



Report WM-2023-009

n, Oldre **3-D-Wake Measurement for an Antarctic Research Vessel (ARV)** Leidos 11951 Freedom I 20190 K. sto Preliminary US HSVA Model No. 5626-00010

Hamburg, June 2023

Katrin Lassen - Project Manager -

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GmbH

i.V.

Nils Reimer - Division Manager AT -



## **Table of Contents**

1	Introduction
2	Test Procedure and Test Conditions
3	Evaluation and Manner of Presentation
4	Result and Conclusion
5	List of Symbols
6	List of Tables
7	List of Figures
Tabl	es 5
Figu	res 15
	sig
	Der
	relli


# **1** Introduction

On behalf of Leidos a three-dimensional wake measurement was carried out at HSVA for an Antarctic Research Vessel (ARV). The test was performed with HSVA model No. 5626-00010 - hull variant 11. The wake measurement for the initial hull was documented in report WM-2022-018.

# 2 Test Procedure and Test Conditions

The wake measurement was carried out in the large towing tank of the HSVA behind the ship model No. 5626-00010, which was built to a scale of 1 : 24.384. The three-dimensional velocity vectors were determined by means of 6 five-hole pitot tubes, that were mounted on a two-armed holder at 6 different radii.

In opposite to the normal procedure for conventional hull forms, this holder was mount d on a temporary support from behind the ship model. The support was adjusted to maintain the longitudinal position and the inclination angle of the propeller plane of the azimuth drive. The nater was not installed during the measurement. The result of the measurement describes the *rominal* wake field of the ship model.

During the test runs the holder was rotated over one complete revolution. A sketch of the arrangement is given in Fig. 1.

The local dynamic pressure values at the holes of the probes were led to a set of electronic pressure transducers by water-filled, flexible plastic tubes. The transformation of the pressure differences into the components of the local velocity vectors was the formed with the help of calibration arrays for each probe. The calibration arrays of the five-hole pitch tubes allow a reliable evaluation up to a flow angle of  $30^{\circ}$  against the direction of the sheft center line. Whenever the velocity vector at a measuring point was outside of this calibration range, a sin plified axial evaluation was used to get additional input for the further analysis of the axial velocity components. In this case the average pressure level at the side holes of the probe wis compared to the front hole pressure by use of Bernoulli's law.

The measurement va. carried out at a draught of 9.906 m and at a model speed corresponding to 9.00 kts. The complete test conditions are summarized in Tab. 1.

# **3** Evaluation and Manner of Presentation

The velocity values  $v_0$ ,  $v_x$ ,  $v_t$  and  $v_r$  at the individual measuring points were made non-dimensional with the ship model speed  $v_m$ . They are given in Tabs. 2 to 7 for the 6 measuring radii and are plotted against the angle of circumference  $\phi$  in Figs. 2 to 4. The definition of  $\phi$  as well as the sign convention for the velocity components is given in Fig. 1. The non-dimensional radii denoted in Figs. 2 to 4 were calculated with an assumed propeller diameter given in Tab. 1. In Figs. 2 to 4 the radii are marked by different symbols. Those points, which could be determined by the simplified axial evaluation method only, are marked in Fig. 2 by a X-symbol. In case that even this method has failed the missing symbols were replaced by smooth dotted lines between the adjoining data points. This also holds for Figs. 3 and 4.

Fig. 5 shows the sum  $\vec{v_t} + \vec{v_r}$  as a vector diagram. In Fig. 6 the curves of constant axial velocity  $v_x$  are given. A combination of both is shown in the color plot in Fig. 7.

For each radius the mean velocity  $v_A^*$  was obtained by Simpson-integration over the circumference,



using the data points shown in Fig. 2:

$$\frac{v_A^*}{v_m} = \frac{1}{2\pi} \cdot \int_0^{2\pi} \frac{v_x}{v_m} d\phi \tag{1}$$

These values are plotted in Fig. 8 as a function of the non-dimensional radius x. A secondary Simpson-integration of the  $v_A^*$ -values in the radial direction from  $x_0 = R_0/R$  to  $x_1 = 1$  led to the mean inflow velocity  $v_A$ , averaged over the whole propeller disc:

$$\frac{v_A}{v_m} = \frac{2}{x_1^2 - x_0^2} \cdot \int_{x_0}^{x_1} \frac{v_A^*}{v_m} x dx$$
(2)

For x = 0 no measurement result was available to serve as a supporting point for this integration. Instead, the mean speed over all measuring radii was assumed at this position. The variat on of he mean value  $v_A$  with the upper integration limit  $x_1$  is given in Tab. 10 and is plotted in Fig. 9. The mean values  $v_{t,mean}$  of the tangential components were determined accordingly to  $v_A$  and are given in Tab. 10 as well.

Furthermore, a harmonic analysis of the axial velocity field was carried out by each on the data points given in Fig. 2. The results are summarized in Tab. 9, where the Fourier-coefficients  $a_n$  and  $b_n$  up to the 9th order are listed for each radius:

$$\frac{v}{v_m} = \sum_{n=0}^{9} \left( a_n \cos(n\phi) + v_n \sin(n\phi) \right) \tag{3}$$

#### 4 Result and Conclusion

HSVA was contracted by Leicos to carry out a three-dimensional wake measurement for an Antarctic Research Vessel (ATV). The measurement was performed at 9.906 m draught and at the speed of 9.00 kts with HSV (n odel No. 5626-00010 - hull variant 11. The wake measurement for the initial hull was documented in report WM-2022-018.

From equation (2) a nominal wake fraction of  $w_{nom} = 0.104$  was obtained which is lower than the value of the initial hull (WM-2022-018) and a more common value for a vessel with this propulsion concept and block coefficient.

The axial velocity distribution (Fig. 2) shows a relatively wide zone of slightly decelerated flow in the upper inner quadrant of the propeller plane. In addition, a second wake peak occurs, but only at the outer radii; it has to be noticed that the two outermost radii are larger than the propeller disc itself. The flow is generally directed inwards. The wake field is essentially relatively smooth and nearly undisturbed.



#### **List of Symbols** 5

- $a_n, b_n$ Fourier-coefficients
- Radius under consideration r
- RAssumed propeller radius
- Assumed propeller hub radius  $R_0$
- Local flow velocity in direction of the flow  $v_0$
- Local axial velocity component  $v_x$
- Local tangential velocity component  $v_t$
- Local radial velocity component  $v_r$
- Model speed  $v_m$
- esion, and a start of the start Inflow velocity, averaged over the circumference at a certain radius  $v_A^*$
- over the whole propeller disc Inflow velocity, averaged  $v_A$
- Taylor were fraction  $(1 v_A/v_m)$  $w_{nom}$
- a-dimensional radius r/R
- $x_0$ , Integration limits for calculation of  $v_A$
- Angle of circumference  $\phi$



# 6 List of Tables

1	Test Conditions.	5
2	Table of the Velocity Components, $r/R = 1.400$	6
3	Table of the Velocity Components, $r/R = 1.200$	7
4	Table of the Velocity Components, $r/R = 1.000$	8
5	Table of the Velocity Components, $r/R = 0.800$	9
6	Table of the Velocity Components, $r/R = 0.600$	10
7	Table of the Velocity Components, $r/R = 0.400$	11
8	Fourier Coefficients, Axial Components	12
9	Fourier Coefficients, Tangential Components	13
10	Mean Values of Axial and Tangential Velocity $(V_A/V_m, V_{t,mean}/V_m)$ .	14

#### 7 List of Figures

10	Mean Values of Axial and Tangential Velocity $(V_A/V_m, V_{t,mean}/V_m)$	14
Ι	List of Figures	
1	Arrangement of the Test Setup and Assignment of the Velocity Components	15
2	$v_x$ - $\phi$ - Diagram	16
3	$v_t$ - $\phi$ - Diagram	17
4	$v_r$ - $\phi$ - Diagram	18
5	Vector Diagram $v_t + v_r$	19
6	Lines of Constant Axial Velocity	20
7	Lines of Const. n. Axial Velocity Combined with Vector Diagram	21
8	$v_A^*$ - $x$ - Degram	22
0	$v_A - y_1$ – Diagram	22



# Tables

Report No.	WM-2023-009		
Test No.	23-0245		
Type of Ship	Antarctic Research Vessel		-
Ship Model No.	5626-00010		
Scale	24.384		
Ship Speed	9.00	kts	
Length Between Perpendiculars	108.720	m	
Breadth in the Waterline	24.400	m	V
Draught AP	9.906	m.	
Draught FP	9,905	n	Ť
Displacement	133.5	$m^3$	
Block Coefficient	0.509		
Distance Measuring Plane - Frame 0	14.563	m	
Tilt Angle $\alpha$	4°		
Water Temperature	15.3	°C	-
kinematic Viscosity of Water (acc. HTCP3)	0.1130E-05	$m^2/s$	
Evaluation Based on Propeller No.	2288		•
Diameter	4.88	m	
Table 1: Test Co	nditions.		

3D Wake Survey Table of the Velocity Components HSVA Model No. 5626-00010 Leidos Model Tests for an ARV Test No. WM-2023-009 Radius r = 140.0 mmr/R = 1.400Phi/deg Vo/Vm Vx/Vm Vr/Vm Vt/Vm 0 0.016 0.965 0.962 -0.067 0.964 0.962 0.023 -0.065 10 20 0.965 0.962 0.031 -0.066 30 0.967 0.964 0.040 -0.066 0.960 0.052 -0.06 40 0.963 0.068 50 0.947 0.943 _ ∩ 60 0.961 0.957 0.076 70 0.960 0.955 0.084 -080 0.954 -0.031 0.948 0.102 0.017 90 0.955 0.948 0.951 100 0.942 0.007 110 0.948 0.936 0.047 0.101 120 0.899 0.890 0 .158 130 0.767 0.089 0.141 -0.028 0.124 140 0.652 0 30 0.655 150 0.647 -0.092 0.049 533 0.538 160 -0.1250.022  $\cap$ 170 31 0.313 -0.102 -0.041180 267 0.251 -0.076 -0.055 190 0.360 0.346 -0.040 -0.094 0.666 0.657 -0.048 -0.101 0.761 0.756 -0.061 -0.061 prei 0.792 0.785 -0.075 -0.064 230 0.831 0.823 -0.095 -0.066 240 0.885 0.877 -0.096 -0.070250 0.884 0.878 -0.081 -0.068 260 0.897 0.891 -0.066 -0.073 270 0.914 0.909 -0.056 -0.077 280 0.905 0.901 -0.041 -0.073 290 0.920 0.916 -0.034 -0.073 300 0.927 0.924 -0.024 -0.073 310 0.934 0.931 -0.016 -0.070320 0.935 0.932 -0.011 -0.068330 0.938 0.936 -0.007-0.068 340 0.943 0.940 -0.001 -0.067 350 0.944 0.941 0.005 -0.066

Table 2: Table of the Velocity Components, r/R = 1.400

3D Wake Survey Table of the Velocity Components HSVA Model No. 5626-00010 Leidos Model Tests for an ARV Test No. WM-2023-009 Radius r = 120.0 mmr/R = 1.200Phi/deg Vo/Vm Vx/Vm Vr/Vm Vt/Vm -0.0040 0.955 0.952 -0.066 0.956 0.004 -0.066 10 0.954 20 0.945 0.943 0.017 -0.061 30 0.936 0.934 0.032 -0.056 0.960 0.033 -0.050 40 0.962 0.044 50 0.962 0.960 _ ∩ 60 0.952 0.949 0.061 30 70 0.963 0.960 0.066 -080 0.963 0.076 -0.017 0.960 10.003 90 0.963 0.959 100 0.963 0.958 0.029 0 110 0.963 0.955 0.063 0.111 120 0.923 0.911 0.097 130 0.840 0.046 0.136 0.776 -0.030 0.131 140 0 164 150 0.750 0.738 -0.088 0.099 720 0.708 160 -0.1120.067  $\cap$ 08 170 0.595 -0.1180.030 -0.093 180 521 0.512 0.006 190 0.556 -0.030 0.550 -0.078 0.724 0.719 -0.075 -0.046 0.740 0.735 -0.082 -0.030 prei 0.779 0.771 -0.106 -0.040 230 -0.049 0.795 0.785 -0.116 240 -0.122 -0.0640.873 0.862 250 0.914 0.905 -0.110 -0.068 260 0.919 0.912 -0.093 -0.068 270 -0.082 -0.071 0.934 0.928 280 0.936 0.930 -0.066 -0.073 290 0.944 0.940 -0.055 -0.072 300 0.947 0.943 -0.045-0.072 310 0.950 0.947 -0.036 -0.072 320 0.954 0.951 -0.030 -0.071 330 0.958 0.955 -0.025 -0.071 340 0.961 0.958 -0.018 -0.070 350 0.962 0.959 -0.011 -0.068

Table 3: Table of the Velocity Components, r/R = 1.200

3D Wake Survey Table of the Velocity Components HSVA Model No. 5626-00010 Leidos Model Tests for an ARV Test No. WM-2023-009 Radius r = 100.0 mmr/R = 1.000Phi/deg Vo/Vm Vx/Vm Vr/Vm Vt/Vm 0 0.031 0.963 0.959 -0.0750.963 0.959 0.035 -0.075 10 20 0.960 0.956 0.049 -0.07130 0.961 0.957 0.059 -0.067 0.961 0.067 -0.06 40 0.966 0.067 50 0.979 0.975 _ ∩ 60 0.961 0.956 0.091 70 0.953 0.948 0.101 -080 0.960 0.104 -0.019 0.954 10.006 90 0.951 0.944 100 0.944 0.935 0.033 110 0.937 0.927 0.068 0.104 120 0.914 0.992 0 .108 130 0.866 0.064 0.135 0.023 0.142 140 0.827 0 114 150 0.779 -0.034 0.111 0.787 0.750 160 -0.063 0.083 170 54 0.649 -0.064 0.057 180 592 0.590 -0.0520.024 190 .595 -0.003 0.594 -0.038 0.657 0.655 -0.054 -0.005 0.701 0.698 -0.061 -0.008 prei 0.709 0.704 -0.086 -0.017 230 0.773 0.764 -0.109 -0.053 240 0.828 0.820 -0.091 -0.060 250 0.904 0.895 -0.097 -0.080260 0.919 0.912 -0.074 -0.083 270 -0.058 0.925 0.919 -0.080 280 0.933 0.927 -0.053 -0.089 290 0.935 0.930 -0.039 -0.087 300 0.934 0.930 -0.023 -0.084310 0.939 0.935 -0.013 -0.086320 0.935 0.932 -0.003 -0.083 0.005 -0.083 330 0.937 0.934 340 0.939 0.935 0.013 -0.082 350 0.940 0.937 0.023 -0.078

Table 4: Table of the Velocity Components, r/R = 1.000

3D Wake Survey Table of the Velocity Components HSVA Model No. 5626-00010 Leidos Model Tests for an ARV Test No. WM-2023-009 Radius r = 80.0 mmr/R = 0.800Phi/deg Vo/Vm Vx/Vm Vr/Vm Vt/Vm 0 0.007 0.963 0.960 -0.0740.964 0.961 0.016 -0.072 10 20 0.979 0.977 0.021 -0.07030 1.001 0.998 0.029 -0.071 0.966 0.963 0.049 -0.057 40 0.058 50 0.966 0.963 _ ∩ ΛF 60 0.985 0.982 0.063 44 70 0.964 0.960 0.075 -080 0.959 -0.010 0.956 0.082 0.010 90 0.963 0.959 100 0.962 0.957 0.035 80 110 0.959 0.954 0.063 0.094 120 0.945 0.920 0.063 130 0.919 0.040 0.121 0.002 0.128 140 0.880 0 0.853 150 -0.037 0.126 0.843 0.816 160 -0.066 0.114  $\cap$ 170 55 0.745 -0.0780.092 180 694 0.687 -0.076 0.063 190 .661 -0.070 0.043 0.656 0.658 0.653 -0.070 0.041 0.712 0.706 -0.089 0.024 prei 0.707 0.716 -0.111 0.021 230 0.782 -0.018 0.792 -0.124240 -0.122 0.823 0.813 -0.037 250 0.883 0.873 -0.119-0.058 260 0.939 0.930 -0.109 -0.071 270 0.938 0.931 -0.090 -0.071 -0.075 280 0.946 0.940 -0.076 290 0.937 0.932 -0.061 -0.078 300 0.945 0.940 -0.047-0.079 310 0.945 0.941 -0.036 -0.080320 0.948 0.944 -0.027-0.0800.945 0.949 330 -0.018 -0.081 340 0.954 0.951 -0.008 -0.079350 0.956 0.953 0.002 -0.078

Table 5: Table of the Velocity Components, r/R = 0.800

3D Wake Survey Table of the Velocity Components HSVA Model No. 5626-00010 Leidos Model Tests for an ARV Test No. WM-2023-009 Radius r = 60.0 mmr/R = 0.600Phi/deg Vo/Vm Vx/Vm Vr/Vm Vt/Vm 0 0.068 0.960 0.954 -0.0880.953 0.946 0.083 -0.079 10 20 0.964 0.957 0.091 -0.07530 0.965 0.957 0.103 -0.067 0.961 0.112 -0.055 40 0.969 0.120 50 0.971 0.962 . N 60 0.970 0.961 0.129 70 0.965 0.956 0.131 -080 0.960 0.139 0.008 0.950 10.030 90 0.960 0.950 100 0.953 0.943 0.050 110 0.952 0.941 0.071 0.092 120 0.945 0.924 0 .107 130 0.943 0.083 0.107 0.928 0.062 0.119 140 0 18 0.901 0.892 150 0.035 0.117 000 0.872 160 0.008 0.113  $\cap$ 170 47 0.840 -0.013 0.105 180 816 0.810 -0.035 0.089 0.071 190 .807 0.802 -0.046 0.803 0.798 -0.064 0.062 0.807 0.802 -0.071 0.043 prei 0.025 0.837 0.833 -0.081 230 0.011 0.824 0.820 -0.080 240 -0.0150.860 0.856 -0.080250 0.919 0.915 -0.072 -0.039 260 0.912 0.909 -0.054 -0.053 270 -0.050 -0.061 0.930 0.927 280 0.933 0.930 -0.033 -0.071 290 0.938 0.934 -0.023 -0.078 300 0.945 0.941 -0.008-0.083 -0.088 310 0.944 0.940 0.007 320 0.945 0.940 0.019 -0.0890.945 0.940 -0.090 330 0.031 340 0.944 0.939 0.043 -0.087350 0.947 0.942 0.055 -0.084

Table 6: Table of the Velocity Components, r/R = 0.600

3D Wake Survey Table of the Velocity Components HSVA Model No. 5626-00010 Leidos Model Tests for an ARV Test No. WM-2023-009 Radius r = 40.0 mmr/R = 0.400Phi/deg Vo/Vm Vx/Vm Vr/Vm Vt/Vm 0 0.946 0.028 0.941 -0.0950.949 0.944 0.039 -0.090 10 20 0.968 0.963 0.046 -0.08930 0.994 0.989 0.052 -0.086 0.949 0.944 0.072 -0.06/ 40 0.080 50 0.951 0.946  $- \cap$ 60 0.975 0.970 0.080 44 70 0.948 0.944 0.090 -080 0.939 0.092 -0.002 0.935 0.018 90 0.944 0.940 100 0.941 0.936 0.037 β0 110 0.940 0.935 0.055 0.072 120 0.937 0.925 0.060 130 0.934 0.042 0.088 0.023 0.100 140 0.920 0 14 150 0.903 0.000 0.101 0.909 0.888 160 -0.021 0.102  $\cap$ 170 78 0.872 -0.0440.094 180 858 0.851 -0.061 0.085 190 .850 0.844 -0.081 0.066 0.834 0.827 -0.095 0.051 0.865 0.857 -0.111 0.030 prei 0.843 0.835 -0.114 0.028 230 -0.007 0.891 0.883 -0.113 240 -0.1150.875 0.867 -0.022 250 0.912 0.904 -0.109-0.043 260 0.935 0.928 -0.101 -0.063 270 0.931 0.923 -0.089 -0.072 -0.075 280 0.933 0.926 -0.087 290 0.937 0.931 -0.062 -0.093 300 0.934 0.928 -0.050-0.097 -0.099310 0.935 0.930 -0.035 320 0.938 0.932 -0.023 -0.103 0.940 -0.010 330 0.934 -0.104340 0.944 0.939 0.002 -0.102350 0.946 0.941 0.016 -0.098

Table 7: Table of the Velocity Components, r/R = 0.400



3D WAKE SURVEY WM-2023-009

Harmonic Analysis of the Axial Components List of Fourier-Coefficients

$\mathbf{x} = 0.400 \qquad \mathbf{x} = 0.600$ AN BN AN BN AN BN 0 0.9167 0.0000 0.9112 0.0000 1 0.0429 0.0200 0.0588 0.0262 2 -0.0156 -0.0087 -0.0273 -0.0179 3 0.0046 0.0137 0.0060 0.0151 4 -0.0011 -0.0011 -0.0018 -0.0036 5 -0.0020 0.0009 -0.0012 0.0020 7 -0.0011 0.0020 0.0029 -0.0000 8 -0.0025 -0.0018 -0.0007 0.0017 9 -0.0033 -0.0016 -0.0007 0.0017 N $\mathbf{x} = 80.0 \text{ mm} \mathbf{x} = 100.0 \text{ mm} \mathbf{x} = 0.800$ AN BN AN BN AN BN AN BN 0 0.8887 0.0024 0.0032 -0.0148 2 -0.0577 0.034 -0.0732 -0.0164 3 0.0203 -0.0015 -0.0057 -0.0052 5 -0.0033 -0.0016 -0.0073 0.0052 5 -0.0057 0.0014 -0.0073 -0.0052 5 -0.0057 0.0014 -0.0073 -0.0052 5 -0.0057 -0.0015 0.0119 0.0013 8 -0.0037 -0.0015 0.0119 0.0013 8 -0.0037 -0.0015 0.0119 0.0013 8 -0.0037 -0.0015 0.0119 0.0013 8 -0.0037 -0.0010 0.8275 0.0000 1 0.1423 0.0140 0.2041 0.0032 2 -0.0878 -0.0065 -0.1300 0.0277 3 0.0409 -0.0067 -0.0013 0.0012 N $\mathbf{x} = 120.0 \text{ mm} \mathbf{x} = 1.400$ N $\mathbf{x} = 120.0 \text{ mm} \mathbf{x} = 1.400$		Ν	<u>r</u> =	40.0 mm	r =	60.0 mm	
$\mathbf{r} = 80.0 \text{ mm} \\ \mathbf{r} = 80.0 \text{ mm} \\ \mathbf{r} = 120.0 \text{ mm} \\ \mathbf{r} = 140.0 \text{ mm} \\ \mathbf{r} = 1.00015 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.200 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.200 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.200 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.200 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 1.200 \text{ mm} \\ \mathbf{r} = 1.400 \text{ mm} \\ \mathbf{r} = 0.0000 \text{ mm} \\ \mathbf{r} = 0.0000$			х =	0.400	x =	0.600	
$\mathbf{N}  \begin{array}{c} \mathbf{n}  $			AN	BN	AN	BN	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	0.9167	0.0000	0.9112	0.0000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.0429	0.0200	0.0588	0.0262	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	-0.0156	-0.0087	-0.0273	-0.0179	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	0.0046	0.0137	0.0060	0.0151	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		4	-0.0011	-0.0011	-0.0018	-0.0036	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	-0.0019	-0.0003	0.0004	-0.0013	O'
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-0.0020	0.0009	-0.0012	0.0020	
$ \begin{array}{c} 8 & -0.0025 & -0.0018 \\ 9 & -0.0033 & -0.0016 \\ \end{array}  \begin{array}{c} -0.0007 & 0.0017 \\ -0.0007 & 0.0017 \\ \end{array} \\ \hline \\ N & r = 80.0 \text{ mm} \\ x = 0.800 \\ \hline \\ N & m & \text{EN} \\ 0 & 0.8887 & 0.0002 \\ 1 & 0.1138 & r.000 \\ 1 & 0.0577 & 1.034 \\ -0.0073 & -0.0164 \\ 3 & 0.0203 & 0.0286 \\ 0.0281 & 0.0185 \\ 4 & -0.0023 & 0.0024 \\ 0.0033 & 0.0067 \\ -0.0033 & 0.0014 \\ 0.0017 & -0.0067 \\ -0.0007 & -0.0015 \\ 0.0013 \\ -0.0037 & -0.0035 \\ -0.0037 & -0.0015 \\ 0.0017 & -0.0010 \\ 0.0058 & 0.0032 \\ \hline \\ N & r = 120.0 \text{ mm} \\ x = 1.200 \\ \hline \\ N & r = 120.0 \text{ mm} \\ x = 1.400 \\ \hline \\ N & r = 120.0 \text{ mm} \\ x = 1.400 \\ \hline \\ N & r = 10007 \\ -0.0037 & -0.0010 \\ 0.0879 & 0.0000 \\ 1 & 0.1423 \\ 0.0409 & -0.0067 \\ -0.0814 & -0.0265 \\ -0.0322 \\ \hline \\ AN & BN \\ \hline \\ 0 & 0.8679 & 0.0008 \\ 6 & -0.0123 \\ -0.0018 & -0.0441 \\ 0.0174 \\ 5 & 0.0086 \\ -0.0123 \\ -0.0024 \\ -0.0246 \\ -0.0024 \\ \hline \\ \end{array}$		7	-0.0011	0.0020	0.0029	-0.0000	
9 -0.0033 -0.0016 -0.0007 0007 N $r = 80.0 \text{ mm}$ $r 100.0 \text{ mm}$ x = 0.800 $x = 0.000AN BN A1 BN A1 BN0 0.8887 0.0000 0.8662 0.00001 0.1138 1.000 0.1340 0.02822 -0.0577 0.034 -0.0732 -0.01643 0.0203 0.0248 0.0281 0.01854 -0.0001 -0.0015 -0.0067 -0.00525 -0.0033 0.0024 0.0033 0.00066 -0.0037 -0.0015 0.0119 0.00138 -0.0037 -0.0035 -0.0073 -0.0017-0.0007 -0.0010 0.0058 0.0032N r = 120.0 \text{ mm} r = 140.0 \text{ mm}x = 1.200$ $x = 1.400N r = 120.0 \text{ mm} r = 1.400N r = 120.0 \text{ mm} r = 1.400N r = 0.0037 - 0.0035 -0.0073 -0.0017-0.0007 -0.0010 0.8275 0.00001 0.1423 0.0140 0.2241 0.00322 -0.0878 -0.0065 -0.1300 0.022773 0.0409 -0.0067 0.0814 -0.02654 -0.0142 0.0018 -0.0441 0.01745 0.0086 -0.0018 0.0304 0.00086 -0.0123 -0.0042 -0.0286 -0.00467 0.0190 0.0036 0.0306 0.00718 -0.0160 -0.0038 -0.0274 -0.0024$		8	-0.0025	-0.0018	-0.0006	-0.0019	
$N \qquad \begin{array}{c} r = 80.0 \text{ mm} \\ x = 0.800 \end{array} \qquad \begin{array}{c} r = 100.0 \text{ mm} \\ x = 0.000 \end{array}$ $\begin{array}{c} AN \qquad BN \qquad A0 \qquad BN \\ 0 \qquad 0.8887 \qquad 0.000 \qquad 0.8662 \qquad 0.000 \\ 1 \qquad 0.1138 \qquad 0.000 \qquad 0.1340 \qquad 0.0282 \\ 2 \qquad -0.0577 \qquad -0.034 \qquad -0.0732 \qquad -0.0164 \\ 3 \qquad 0.0203 \qquad 0.0286 \qquad 0.0281 \qquad 0.0185 \\ 4 \qquad -0.0027 \qquad -0.0079 \qquad -0.0062 \qquad 0.0006 \\ 6 \qquad -0.0033 \qquad 0.0024 \qquad 0.0033 \qquad 0.0006 \\ 6 \qquad -0.0037 \qquad -0.0015 \qquad -0.0073 \qquad -0.0017 \\ -0.0037 \qquad -0.0015 \qquad -0.0073 \qquad -0.0017 \\ -0.0007 \qquad -0.0010 \qquad 0.0058 \qquad 0.0032 \end{array}$ $\begin{array}{c} N \qquad r = 120.0 \text{ mm} \qquad r = 140.0 \text{ mm} \\ x = 1.200 \qquad x = 1.400 \end{array}$ $\begin{array}{c} N \qquad N \qquad BN \qquad AN \qquad BN \\ 0 \qquad 0.8679 \qquad 0.0000 \qquad 0.8275 \qquad 0.0000 \\ 1 \qquad 0.1423 \qquad 0.0140 \qquad 0.2041 \qquad 0.0032 \\ 2 \qquad -0.0878  -0.0065 \qquad -0.1300 \qquad 0.0277 \\ 3 \qquad 0.0409  -0.0065 \qquad -0.1300 \qquad 0.0277 \\ 3 \qquad 0.0409  -0.0065 \qquad -0.1300 \qquad 0.00277 \\ 3 \qquad 0.0409  -0.0065 \qquad -0.03041 \qquad -0.0265 \\ 4 \qquad -0.0142 \qquad 0.0018 \qquad -0.0441 \qquad -0.0265 \\ 4 \qquad -0.0122 \qquad -0.0036 \qquad -0.0286 \qquad -0.0046 \\ 7 \qquad 0.0130 \qquad 0.0036 \qquad 0.0306 \qquad 0.0008 \\ 6 \qquad -0.0123  -0.0042 \qquad -0.0286  -0.0046 \\ 7 \qquad 0.0190 \qquad 0.0036 \qquad 0.0306 \qquad 0.0071 \\ 8 \qquad -0.0107 \qquad -0.0028 \qquad -0.0274 \qquad -0.0024 \end{array}$		9	-0.0033	-0.0016	-0.0007	0 00 7	
N $r = 80.0 \text{ mm}$ $r = 100.0 \text{ mm}$ x = 0.800 $r = 1.000AN BN AP BN0 0.8887 0.0000 0.8662 0.00001 0.1138 0.000 0.1340 0.02822 -0.0577 -0.034 -0.0732 -0.01643 0.0203 0.0286 0.0281 0.01854 -0.0007 -0.0015 -0.0067 -0.00525 -0.003 0.0024 0.0033 0.00066 -00043 -0.0015 -0.0062 0.00067 0.0031 0.0051 0.0119 0.00138 -0.0037 -0.0035 -0.0073 -0.0017-0.0007 -0.0010 0.0058 0.0032N r = 120.0 \text{ mm} r = 140.0 \text{ mm}x = 1.200$ $x = 1.400N r = 120.0 \text{ mm} r = 1.400N r = 0.007 - 0.0010 0.0058 0.0032N r = 0.0065 - 0.1300 0.02773 0.0409 -0.0065 -0.1300 0.02773 0.0409 -0.0065 -0.1300 0.02773 0.0409 -0.0065 -0.0130 0.02773 0.0409 -0.0065 -0.01300 0.02773 0.0409 -0.0065 -0.00814 -0.02654 -0.0142 0.0018 -0.0441 0.01745 0.0086 -0.0018 0.0304 0.00086 -0.0123 -0.0042 -0.0286 -0.00467 0.0190 0.0036 0.0306 0.00718 -0.0160 -0.0039 0.0187 -0.0024$							1
$N \qquad r = 80.0 \text{ mm} \qquad r = 100.0 \text{ mm} \\ x = 0.800 \qquad x = 1.000 \\ \hline N \qquad N \qquad BN \qquad A1 \qquad BN \\ 0 \qquad 0.8887 \qquad 0.000 \qquad 0.8662 \qquad 0.0000 \\ 1 \qquad 0.1138 \qquad 0.020 \qquad 0.1340 \qquad 0.0282 \\ 2 \qquad -0.0577 \qquad -0.034 \qquad -0.0732 \qquad -0.0164 \\ 3 \qquad 0.0203 \qquad 0.0286 \qquad 0.0281 \qquad 0.0185 \\ 4 \qquad -0.0003 \qquad -0.0079 \qquad -0.0067 \qquad -0.0052 \\ 5 \qquad -0.003 \qquad 0.0024 \qquad 0.0033 \qquad 0.0006 \\ 6 \qquad -0.0043 \qquad -0.0015 \qquad -0.0062 \qquad 0.0006 \\ 7 \qquad 0.0037 \qquad -0.0051 \qquad 0.0119 \qquad 0.0013 \\ 8 \qquad -0.0037 \qquad -0.0035 \qquad -0.0073 \qquad -0.0017 \\ -0.0007 \qquad -0.0010 \qquad 0.0058 \qquad 0.0032 \\ \hline N \qquad r = 120.0 \text{ mm} \qquad r = 140.0 \text{ mm} \\ x = 1.200 \qquad x = 1.400 \\ \hline N \qquad N \qquad BN \qquad AN \qquad BN \\ 0 \qquad 0.8679 \qquad 0.0000 \qquad 0.8275 \qquad 0.0000 \\ 1 \qquad 0.1423 \qquad 0.0140 \qquad 0.2041 \qquad 0.0032 \\ 2 \qquad -0.0878 \qquad -0.0065 \qquad -0.1300 \qquad 0.0277 \\ 3 \qquad 0.0409 \qquad -0.0065 \qquad -0.1300 \qquad 0.0277 \\ 3 \qquad 0.0409 \qquad -0.0018 \qquad -0.0441 \qquad 0.0174 \\ 5 \qquad 0.0086 \qquad -0.0018 \qquad -0.0441 \qquad 0.0174 \\ 5 \qquad 0.0086 \qquad -0.0018 \qquad -0.0246 \qquad -0.0046 \\ 7 \qquad 0.0123 \qquad -0.0024 \qquad -0.0286 \qquad -0.0046 \\ 7 \qquad 0.0190 \qquad 0.0036 \qquad -0.0286 \qquad -0.0046 \\ 7 \qquad 0.0190 \qquad 0.0036 \qquad -0.0274 \qquad -0.0021 \\ 9 \qquad 0.0127 \qquad -0.0039 \qquad 0.0187 \qquad -0.0021 \\ \hline$						100 0	
$\mathbf{X} = 0.800$ $\mathbf{X} = 0.800$ $\mathbf{X} = 0.000$ $\mathbf{X} = 0.0000$ $\mathbf{X} = 0.00000$ $\mathbf{X} = 0.00000$ $\mathbf{X} = 0.00000$ $\mathbf{X} = 0$		IN	<u>r</u> =		r -		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			X =	0.800		1.000	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			AN	BN	AD	BN	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	0.8887	0.000	0.8662	0.0000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.1138	0.010	0.1340	0.0282	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	-0.0577	-1.03 4	-0.0732	-0.0164	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	0.0203	0.0286	0.0281	0.0185	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	-0.0014	-0.0079	-0.0067	-0.0052	
$ \begin{array}{c} 6 & -0.0043 & -0.0015 & -0.0062 & 0.0006 \\ 7 & 0.0031 & 0.0051 & 0.0119 & 0.0013 \\ -0.0037 & -0.0035 & -0.0073 & -0.0017 \\ -0.0007 & -0.0010 & 0.0058 & 0.0032 \\ \end{array} \\  \begin{array}{c} N & r = 120.0 \text{ mm} & r = 140.0 \text{ mm} \\ x = 1.200 & x = 1.400 \\ \end{array} \\ \begin{array}{c} AN & BN & AN & BN \\ 0 & 0.8679 & 0.0000 & 0.8275 & 0.0000 \\ 1 & 0.1423 & 0.0140 & 0.2041 & 0.0032 \\ 2 & -0.0878 & -0.0065 & -0.1300 & 0.0277 \\ 3 & 0.0409 & -0.0067 & 0.0814 & -0.0265 \\ 4 & -0.0142 & 0.0018 & -0.0441 & 0.0174 \\ 5 & 0.0086 & -0.0018 & 0.0304 & 0.0008 \\ 6 & -0.0123 & -0.0042 & -0.0286 & -0.0046 \\ 7 & 0.0190 & 0.0036 & 0.0306 & 0.0071 \\ 8 & -0.0160 & -0.0038 & -0.0274 & -0.0024 \\ \end{array} $		5	-0.9023	0.0024	0.0033	0.0006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-0.0.43	-0.0015	-0.0062	0.0006	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		7	0.0031	0.0051	0.0119	0.0013	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		8	-0.0037	-0.0035	-0.0073	-0.0017	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sim$		-0.0007	-0.0010	0.0058	0.0032	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$x = 1.200 \qquad x = 1.400$ $AN \qquad BN \qquad AN \qquad BN$ $0 \qquad 0.8679 \qquad 0.0000 \qquad 0.8275 \qquad 0.0000$ $1 \qquad 0.1423 \qquad 0.0140 \qquad 0.2041 \qquad 0.0032$ $2 \qquad -0.0878 \qquad -0.0065 \qquad -0.1300 \qquad 0.0277$ $3 \qquad 0.0409 \qquad -0.0067 \qquad 0.0814 \qquad -0.0265$ $4 \qquad -0.0142 \qquad 0.0018 \qquad -0.0441 \qquad 0.0174$ $5 \qquad 0.0086 \qquad -0.0018 \qquad 0.0304 \qquad 0.0008$ $6 \qquad -0.0123 \qquad -0.0042 \qquad -0.0286 \qquad -0.0046$ $7 \qquad 0.0190 \qquad 0.0036 \qquad 0.0306 \qquad 0.0071$ $8 \qquad -0.0160 \qquad -0.0038 \qquad -0.0274 \qquad -0.0021$ $9 \qquad 0.0122 \qquad 0.0039 \qquad 0.0187 \qquad -0.0024$	~~~~	Ν	r =	120.0 mm	r =	140.0 mm	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O^{\circ}$		x =	1.200	x =	1.400	
ANBNANBN0 $0.8679$ $0.0000$ $0.8275$ $0.0000$ 1 $0.1423$ $0.0140$ $0.2041$ $0.0032$ 2 $-0.0878$ $-0.0065$ $-0.1300$ $0.0277$ 3 $0.0409$ $-0.0067$ $0.0814$ $-0.0265$ 4 $-0.0142$ $0.0018$ $-0.0441$ $0.0174$ 5 $0.0086$ $-0.0018$ $0.0304$ $0.0008$ 6 $-0.0123$ $-0.0042$ $-0.0286$ $-0.0046$ 7 $0.0190$ $0.0036$ $0.0306$ $0.0071$ 8 $-0.0160$ $-0.0038$ $-0.0274$ $-0.0021$ 9 $0.0122$ $0.0039$ $0.0187$ $-0.0024$			7 11	DN	7 17	DNI	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0	AN 0 9670		AN 0 9275		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1	0.0079	0.0000	0.0275	0.0000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	-0 0878	-0.0045	-0 1300	0.0032	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	0 0409	-0.0067	0 0814	-0.0265	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4	-0.0142	0.0018	-0.0441	0.0174	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		5	0.0086	-0.0018	0.0304	0.0008	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		6	-0.0123	-0.0042	-0.0286	-0.0046	
8 -0.0160 -0.0038 -0.0274 -0.0021 9 0.0122 0.0039 0.0187 -0.0024		7	0.0190	0.0036	0.0306	0.0071	
9 0.0122 0.0039 0.0187 -0.0024		8	-0.0160	-0.0038	-0.0274	-0.0021	
		9	0.0122	0.0039	0.0187	-0.0024	

Table 8: Fourier Coefficients, Axial Components



3D WAKE SURVEY WM-2023-009

Harmonic Analysis of the Tangential Components List of Fourier-Coefficients



Table 9: Fourier Coefficients, Tangential Components



3D WAKE SURVEY WM-2023-009

Mean Values of Axial and Tangential Velocity (VA/Vm; Vt,mean/Vm) (in dependence of assumed propeller diameter)

x1	VA/Vm	Vt(mean)/Vm	w=1-VA/Vm	
0.600	0.912	028	0.088	
0.650	0.912	024	0.088	
0.700	0.911	022	0.089	
0.750	0.909	020	0.091	
0.800	0.907	019	0.093	
0.850	0.904	018	0.096	
0.900	0.901	018	0.099	
0.950	0.899	018	0.101	1
1.000	0.896	018	0.104	
1.050	0.893	018	0.107	
1.100	0.891	019	0.109	
1.150	0.889	019	0.11/	
1.200	0.887	019	0.113	
1.250	0.885	020	0.115	
1.300	0.883	020	0.117	
1.350	0.880	021	. 120	
1.400	0.877	022	0.123	
1.450	0.874	.02	0.126	

Table 10: Mean Values of Axia' and T. ng. ntial Velocity  $(V_A/V_m, V_{t,mean}/V_m)$ 

preliminary

# Figures



Figure 1: Arrangement of the Test Setup and Assignment of the Velocity Components



#### Figure 2: $v_x$ - $\phi$ - Diagram

Antarctic Research Vessel (ARV)



#### Figure 3: $v_t$ - $\phi$ - Diagram







WM-2023-009



Figure 5: Vector Diagram  $v_t + v_r$ 



WM-2023-009



Figure 6: Lines of Constant Axial Velocity



WM-2023-009



Figure 7: Lines of Constant Axial Velocity Combined with Vector Diagram





Figure 9:  $v_A$  -  $x_1$  – Diagram

## **11.** Attachment 4 – HSVA Ice Test Report (Reference 7)

Preliminary Design, Oldras

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GMBH

THE HAMBURG SHIP MODEL BASIN

IDR5

Report AT-2023-006

Ice Meder Tests for Antarctic Research Vessel (ARV) -Addendum 5 Post-PDR Hull Variant Testing Preliminan

HSVA Model No. 5626-00010

**Customer:** Leidos Inc.





Leidos, Inc.

#### **Document Control Sheet**

Customer	: Leidos
Project	: Antarctic Research Vessel (ARV)
Contract No.	: 617456
Report No.	: AT-2023-006
Report Title	: Ice Model Tests for Antarctic Research Vessel (ARV) -Addendum 5 Post-PDR Hull Variant Testing
File	: 617456-AT-2023-006.pdf

Rev. No.	Date	Reason for Issue	Prepared by	Checked by Approved by
00	03-07-2023	For Clients Review	NR	ОН

Summary:	
Summary	
	In March and April 2023 the performance of the model that was built according
	to the design revision of ARV was investigated in three ice model test series. The
	model was manufactured in HSVA's workshop and equipped with ice type stock
	propellers and azimuth neasing. The test series included tests in level ice and
	broken channel. First tests, ocus d on the verification of ice performance (attainable
	speed and maneuvering) alter design revision while the last test series was used to
	determine specific operational capabilities. In all test series the model ice properties
	ware magnetic dependent to the target appointed monomities. Competing ware
	were measured at d con pared to the target spectried properties. Corrections were
	applied to account for deviations in the analysis.
~ •	
Conclusions.	The test observations and analysis from the additional test series show that the
	The test observations and analysis from the additional test series show that the
	revised design (hull variant 11) achieves either similar or even better ice
	performance compared to the first design revision (hull variant 6) tested in autumn
	performance compared to the first design to his in (that variant o) tested in automatic
	2022. In the third test series the model showed good ability to clear the broken
	channel using the azimuth thrusters at a different angle

Keywords:

Antarctic Research Vessel, Ice Model Tests, Level Ice, Ice Ridges, Towed Propulsion Tests, Free Running Propulsion Tests, Break Out Tests



#### Report AT-2023-006



Hamburg, December 2023

HAMBURGISCHE SCHIFFBAU-VERSUCHSANSTALT GmbH

Prepared by:

Nils Reimer



#### Content

IC P(	CE MO OST-H	ODEL TESTS FOR ANTARCTIC RESEARCH VESSEL (ARV) -ADDENDUM 5 PDR HULL VARIANT TESTING	ł			
1	I	BACKGROUND AND OBJECTIVES OF ICE MODEL TESTS	)			
2	Ι	DESCRIPTION OF MODEL AND APPENDAGES1(	)			
3	7	TEST PROGRAMS	5			
1	r		2			
-	4 1		<b>,</b>			
	4.1 <i>A</i> 1 1	ICE PROPERTIES	5 2			
	4.1.2	Ser 20000R	, 1			
	4.2	SER 30000R	)			
5	]	TEST OBSERVATIONS	5			
	5.1	SER 10000R 34	5			
	5.2	SER 20000R	1			
	5.3	SER 30000R	)			
6	]	TEST RESULTS	3			
	6.1	TEST RUN NO. 11010R, TOWED PROPULSION TEST AHEAD IN LEVEL ICE, 6 KNOTS	3			
	6.2	TEST RUN NO. 12010R, TOWED PROPULSION TEST ANI AD IN LEVEL ICE, 3 KNOTS	3			
	6.3	TEST RUN NO. 13011R TOWED PROPULSION LEST ASTERN IN LEVEL ICE, 3 KNOTS	3			
	6.4	SUMMARY OF FREE RUNNING TEST KESU CIS	2			
	6.5	TEST RUN NO. 14011R FREE RUN UNG FEST ASTERN IN 1.37M LEVEL ICE, 70% POWER 64	1			
	6.6 6.7	TEST KUN NO. 15011K FREE KUNNING TEST ASTERN IN 1.37M LEVEL ICE, 100% POWER 67 Test Puin No. 21010P Edge Administration of the AD IN 1.27M Level ICE, 40% Power 70	1			
	0.7 6.8	TEST RUN NO. 21010R FLEER INNING TEST AHEAD IN 1.57M LEVELICE, 40% FOWER/C	י ז			
	6.9	TEST RUN NO. 2401 K TREE RUNNING TEST AHEAD IN 1.37M LEVEL ICE, 100% POWER. 76	5			
	6.10	TEST RUN No. 24 M 1R FREE RUNNING TEST ASTERN IN 1.37M LEVEL ICE, 100% POWER 79	)			
	6.11	TEST RUUNO. 25011R BREAK OUT TEST ASTERN IN 1.37M LEVEL ICE	2			
	6.12	TEST RUN NO. 26010R BREAK OUT TEST AHEAD IN 1.37M LEVEL ICE	7			
	6.13	TEST RUN NO. 31010R FREE RUNNING TEST AHEAD IN 1.0M LEVEL ICE, 100% POWER 92	2			
	5.14	1EST KUN NO. 32010K CHANNEL CLEARING TEST AHEAD IN 1.00M LEVEL ICE, 60 DEGREE	5			
	6 15	Test Run No. 33010R Channel Clearing Test Ahead in 1.00m Level Ice. 60 Degree	) 			
	PODA	Angle Outward	)			
	6.16	TEST RUN NO. 34010R CHANNEL CLEARING TEST AHEAD IN 1.00M LEVEL ICE,				
	ALTE	RNATING POD ANGLE 104	1			
	6.17	TEST RUN NO. 35010R SIDE STEP TEST IN 1.0M LEVEL ICE	3			
	6.18	TEST RUN NO. 36010R CHANNEL CLEARING TEST AHEAD IN 1.0M LEVEL ICE, 80 DEGREE	•			
	POD A	ANGLE INWARD	5			
	6.20	TEST NUM INO. 37011 IN CREATION OF DRASH ICE FIELD	/ 			
	6.21	PROPELLER-ICE INTERACTION	5			
7	-	SUMMARY AND CONCLUSIONS	5			
	יאיזסס	DIV A USVA Model Lee Dreparation and Dreparty Determination	,			
A A	AFFENDIA A – no v A biouci ice rieparation and Property Determination APPENDIX B – Analysing Methods of Ice Model Tests					
A	PPEN	DIX C – Test Conditions, Tables and Figures				



## List of Figures

Figure 1 Side view of stock azimuth-propeller arrangement	.11
Figure 2 Stern view of stock azimuth-propeller arrangement	.11
Figure 3 Front view of HSVA model no. 5626	.12
Figure 4 Oblique front view of HSVA model no. 5626	.12
Figure 5 Stern front view of HSVA model no. 5626	.13
Figure 6 Oblique stern view of HSVA model no. 5626	.13
Figure 7 Side view of aftship HSVA model no. 5626	.14
Figure 8 Plot of the broken channel of test run 11010R and 12011R	.20
Figure 9 Plot of the broken channel of test run 13011R and 15011R	20
Figure 10 Plot of flexural strength measurements during test series 10000R	.21
Figure 11 Plot of crushing force time series from indentation test, test series 10000R	.22
Figure 12 Level ice density measurements of series 10000R	.23
Figure 13 Measurement of broken channel width, test run nos. 21010R-24010R	.26
Figure 14 Measurement of broken channel width, test run nos. 250101-20010R	.26
Figure 15 Flexural strength for test series 20000R	.27
Figure 16 Plot of crushing force time series from indentation test, test series 20000R	.28
Figure 17 Level ice density measurements of s ries 2 0, 00 k	.29
Figure 18 Level ice density measurements of seri \$ 20000R	.30
Figure 19 Measurement of broken charnel vidth, test run nos. 31010R-35010R	.31
Figure 20 Flexural strength for test rei es 20000R	.31
Figure 21 Plot of crushing force time series from indentation test, test series 30000R	.32
Figure 22 Plot of crt shi g force time series from indentation test, test series 30000R	.33
Figure 23 Level ne lensity measurements of series 30000R	.34
Figure 24 Test ran no. 11010R underwater ice observations	.35
Figure 25 Test run no. 13011R underwater ice observations	.36
Figure 26 Test run no. 14011R underwater ice observations	.36
Figure 27 Test run no. 21010R underwater ice observations	.37
Figure 28 Test run no. 24011R underwater ice observations	.38
Figure 29 Test run no. 25011R underwater ice observations	.39
Figure 30 Test run no. 26010R underwater ice observations	.39
Figure 31 Test run no. 31010R underwater ice observations	.40
Figure 32 Test run no. 32010R underwater ice observations	.41
Figure 33 Test run no. 33010R underwater ice observations	.41
Figure 34 Test run no. 34010R underwater ice observations	.42
Figure 35 Test run no. 35010R underwater ice observations 1	.42
Figure 36 Test run no. 35010R underwater ice observations 2	.43



Figure 37 Test run no. 36010R underwater ice observations	44
Figure 38 Test run no. 37011R underwater ice observations 1	44
Figure 39 Test run no. 37011R underwater ice observations 2	45
Figure 40 Test run no. 37011R underwater ice observations 3	45
Figure 41 Test run no. 38010R underwater ice observations 1 (85 degree thruster angle)	46
Figure 42 Test run no. 38010R underwater ice observations 2 (60 degree thruster angle)	46
Figure 43 Test run no. 38010R underwater ice observations 3 (30 degree thruster angle)	47
Figure 44 Total resistance ahead in 1.37m level ice, 6knots, model scale	49
Figure 45 Total thrust ahead in 1.37m level ice, 6knots, model scale	49
Figure 46 Delivered power ahead in 1.37m level ice, 6knots, model scale	.50
Figure 47 Total resistance ahead in 1.37m level ice, 6knots, full scale	51
Figure 48 Total thrust ahead in 1.37m level ice, 6knots, full scale	51
Figure 49 Delivered power ahead in 1.37m level ice, 6knots, full scale	52
Figure 50 Total resistance ahead in 1.37m level ice, 3knots, model scale	54
Figure 51 Total thrust ahead in 1.37m level ice, 3knots, model scale	54
Figure 52 Delivered power ahead in 1.37m level ice, 3knots, model scyle	55
Figure 53 Total resistance ahead in 1.37m level ice, 3knots full scale,	56
Figure 54 Total thrust ahead in 1.37m level ice, 3knots, 10ll scile	56
Figure 55 Delivered power ahead in 1.37m level ice, 3knots, full scale	57
Figure 56 Total resistance astern in 1.37m kvel icc, 3knots, moderl scale	58
Figure 57 Total thrust astern in 1.37m . vel we, 3knots, model scale	59
Figure 58 Delivered power astern it 1.57m level ice, 3knots, model scale	59
Figure 59 Total resistance astern in 1.37m level ice, 3knots, full scale	60
Figure 60 Total thrus, as ern in 1.37m level ice, 3knots, full scale	61
Figure 61 Danvered power astern in 1.37m level ice, 3knots, full scale	61
Figure 12 Summary of free running test results ahead	62
Figure 63 Summary of free running test results astern	63
Figure 64 Test run 14011R track plot	64
Figure 65 Test run no. 14011R, free running test astern, velocity	64
Figure 66 Test run no. 14011R, free running test astern, propeller revolution	65
Figure 67 Test run no. 14011R, free running test astern, thrust	65
Figure 68 Test run no. 14011R, free running test astern, torque	66
Figure 69 Test run no. 14011R, free running test astern, power	66
Figure 70 Test run no. 15011R track plot	67
Figure 71 Test run no. 15011R, free running test astern, velocity	67
Figure 72 Test run no. 15011R, free running test astern, propeller revolution	68
Figure 73 Test run no. 15011R, free running test astern, thrust	68
Figure 74 Test run no. 15011R, free running test astern, torque	69



Figure 75 Test run no. 15011R, free running test astern, power	69
Figure 76 Test run no. 21010R track plot	70
Figure 77 Test run no. 21010R, free running test astern, velocity	70
Figure 78 Test run no. 21010R, free running test astern, propeller revolution	71
Figure 79 Test run no. 21010R, free running test astern, thrust	71
Figure 80 Test run no. 21010R, free running test astern, torque	72
Figure 81 Test run no. 21010R, free running test astern, power	72
Figure 82 Test run no. 23010R track plot	73
Figure 83 Test run no. 23010R, free running test astern, velocity	73
Figure 84 Test run no. 23010R, free running test astern, propeller revolution	.74
Figure 85 Test run no. 23010R, free running test astern, thrust	74
Figure 86 Test run no. 23010R, free running test astern, torque	75
Figure 87 Test run no. 23010R, free running test astern, power	75
Figure 88 Test run no. 24011R track plot	76
Figure 89 Test run no. 24011R, free running test astern, velocity	76
Figure 90 Test run no. 24011R, free running test astern, propeller revolution	77
Figure 91 Test run no. 24011R, free running test astern, thrust	77
Figure 92 Test run no. 24011R, free running test asterr, to rque	78
Figure 93 Test run no. 24011R, free running text aste n, power	78
Figure 94 Test run no. 24111R track plot	79
Figure 95 Test run no. 24111R, free run ning est astern, velocity	79
Figure 96 Test run no. 24111P., free running test astern, propeller revolution	80
Figure 97 Test run no. 271 D.R. free running test astern, thrust	80
Figure 98 Test vur no 24 111R, free running test astern, torque	81
Figure 99 Test an no. 24111R, free running test astern, power	81
Figure 00 Test run no. 25010R track plot	82
Figure 101 Test run no. 25011R, free running test astern, heading	82
Figure 102 Test run no. 25011R, free running test astern, turning rate	83
Figure 103 Test run no. 25011R, free running test astern, velocity	83
Figure 104 Test run no. 25011R, free running test astern, propeller revolution	84
Figure 105 Test run no. 25011R, free running test astern, POD angle	84
Figure 106 Test run no. 25011R, free running test astern, thrust	85
Figure 107 Test run no. 25011R, free running test astern, torque	85
Figure 108 Test run no. 25011R, free running test astern, power	86
Figure 109 Test run no. 26010 track plot	87
Figure 110 Test run no. 26010R, free running test ahead, heading	87
Figure 111 Test run no. 26010R, free running test ahead, turning rate	88
Figure 112 Test run no. 26010R, free running test ahead, velocity	88



Figure 113 Test run no. 26010R, free running test ahead, propeller revolution	89
Figure 114 Test run no. 26010R, free running test ahead, POD angle	89
Figure 115 Test run no. 26010R, free running test ahead, thrust	90
Figure 116 Test run no. 26010R, free running test ahead, torque	90
Figure 117 Test run no. 26010R, free running test ahead, power	91
Figure 118 Test run no. 31010R	92
Figure 119 Test run no. 31010R, free running test ahead, heading	92
Figure 120 Test run no. 31010R, free running test ahead, velocity	93
Figure 121 Test run no. 31010R, free running test ahead, propeller revolution	93
Figure 122 Test run no. 31010R, free running test ahead, POD angle	.94
Figure 123 Test run no. 31010R, free running test ahead, thrust	94
Figure 124 Test run no. 31010R, free running test ahead, torque	95
Figure 125 Test run no. 31010R, free running test ahead, power	95
Figure 126 Test run no. 32010R track plot	96
Figure 127 Test run no. 32010R, channel clearing test ahead, heading	96
Figure 128 Test run no. 32010R, channel clearing test ahead, velocity.	97
Figure 129 Test run no. 32010R, channel clearing test ahead propaller revolution	97
Figure 130 Test run no. 32010R, channel clearing test and POD angle	98
Figure 131 Test run no. 32010R, channel clearl g tes anead, thrust	98
Figure 132 Test run no. 32010R, channel clearing test ahead, torque	99
Figure 133 Test run no. 32010R, chem. I clearing test ahead, power	99
Figure 134 Test run no. 33010 tra k plot	.100
Figure 135 Test run no. 330. 00, channel clearing test ahead, heading	.100
Figure 136 Test run 10. 3010R, channel clearing test ahead, velocity	.101
Figure 137 Tes run no. 33010R, channel clearing test ahead, propeller revolution	.101
Figure 33 Test run no. 33010R, channel clearing test ahead, POD angle	.102
Figure 139 Test run no. 33010R, channel clearing test ahead, thrust	.102
Figure 140 Test run no. 33010R, channel clearing test ahead, torque	.103
Figure 141 Test run no. 33010R, channel clearing test ahead, power	.103
Figure 142 Test run no. 34010R track plot	.104
Figure 143 Test run no. 34010R, free running test ahead, heading	.104
Figure 144 Test run no. 34010R, free running test ahead, velocity	.105
Figure 145 Test run no. 34010R, free running test ahead, propeller revolution	.105
Figure 146 Test run no. 34010R, free running test ahead, POD angle	.106
Figure 147 Test run no. 34010R, free running test ahead, thrust	.106
Figure 148 Test run no. 34010R, free running test ahead, torque	.107
Figure 149 Test run no. 34010R, free running test ahead, power	.107
Figure 150 Test run no. 35010R track plot	.108

Figure 151 Test run no. 35010R, free running test ahead, heading	
Figure 152 Test run no. 35010R, free running test ahead, turning rate	
Figure 153 Test run no. 35010R, free running test ahead, velocity109	
Figure 154 Test run no. 35010R, free running test ahead, propeller revolution110	
Figure 155 Test run no. 35010R, free running test ahead, POD angle	
Figure 156 Test run no. 35010R, free running test ahead, thrust	
Figure 157 Test run no. 35010R, free running test ahead, torque111	
Figure 158 Test run no. 35010R, free running test ahead, power	
Figure 159 Test run no. 36010R track plot	
Figure 160 Test run no. 36010R, free running test ahead, heading	
Figure 161 Test run no. 36010R, free running test ahead, velocity	
Figure 162 Test run no. 36010R, free running test ahead, propeller revolution	
Figure 163 Test run no. 36010R, free running test ahead, POD angle	
Figure 164 Test run no. 36010R, free running test ahead, thrust	
Figure 165 Test run no. 36010R, free running test ahead, torque	
Figure 166 Test run no. 36010R, free running test ahead, power	
Figure 167 Test run no. 37011R	
Figure 168 Test run no. 36010R, free running test ahead, ieading	
Figure 169 Test run no. 36010R, free running t st ah ad, velocity	
Figure 170 Test run no. 36010R, free running test anead, propeller revolution	
Figure 171 Test run no. 36010R, free running test ahead, POD angle	
Figure 172 Test run no. 36010K, fr e unning test ahead, thrust	
Figure 173 Test run no. 350. 0r, free running test ahead, torque	
Figure 174 Test run 10. 16010R, free running test ahead, power	
Figure 175 Tes run no. 38010R track plot	
Figure 76 Test run no. 38010R, free running test ahead, heading	
Figure 177 Test run no. 36010R, free running test ahead, velocity122	
Figure 178 Test run no. 36010R, free running test ahead, propeller revolution122	
Figure 179 Test run no. 36010R, free running test ahead, POD angle	
Figure 180 Test run no. 36010R, free running test ahead, thrust	
Figure 181 Test run no. 36010R, free running test ahead, torque124	
Figure 182 Test run no. 36010R, free running test ahead, power	
Figure 183 Comparison of power vs. thrust curve in towed propulsion test and ice free overload test125	



#### **List of Tables**

Table 1 Main particulars of ARV and HSVA model 5626    10
Table 2 Main particulars of HSVA stock propellers 2288 and 228910
Table 3 Model ice thickness in test series 11010R, 12020R    18
Table 4 Model ice thickness in test series 13011R, 14011R, 15011R
Table 5 Level ice thickness measurements of test series 20000R part 1
Table 6 Level ice thickness measurements of test series 20000R part 1
Table 7 Results of free running tests in 1.37m level ice    62
Table 8 Comparison ice performance data hull variant 11 and hull variant 6 in 1.37m level ice
Preliminary Desis

#### **1** Background and Objectives of Ice Model Tests

Leidos provides logistical support to the United States Antarctic Program (USAP) for the Antarctic Support Contract (ASC). The specified support includes operation and maintenance of facilities, vehicles, and equipment at all USAP stations, as well as two ice-classed research vessels. Support is also provided to all National Science Foundation (NSF) sponsored research projects in Antarctica, and includes construction and operations at USAP stations as well as the temporary field camps used during the austral summer field season.

NSF is planning for replacement of existing Nathaniel B. Palmer with a future Antarctic Research Vessel (ARV) to provide state of the art research science capabilities, improved open water and icebreaking performance and efficiency. ARV Concept Design studies resulted in an indicative design as proof of concept. Preliminary Design phase efforts have commenced to further project le init on by completing whole-ship architecture trade-offs, developing a converged preliminary level design with all necessary technical documentation, and developing an associated Design and Construction cost estimate and schedule. The Preliminary Design phase culminates in a Preliminary Pesign Review (PDR). Upon successful completion of PDR, the NSF director may apprive entry into the Final Design phase which will likely occur 6 to 12 months following PDR.

Development of the ARV hull form to meet open water, icebreaking, and science related missions is crucial to the success of the overall ARV design and mission. Physical model testing in open water and ice is required to validate the approach [1].

Leidos, Inc. contracted HSVA to assess the ice blecking performance of a revised design (hull variant 11) for an Antarctic Research Vessel (ARV). An additional ice model test campaign was carried out for the project in HSVA's large ice model basin between March and April 2023. For the tests a model at a scale ratio of 1:24.384 was man ufactured in HSVA's model workshop. The test campaign in ice included test in three ice sheets, two ice sneets with a thickness corresponding to 1.37m in full scale and one ice sheets with a thickness corresponding to 1.00m level ice in full scale... The tests in level ice included towed propulsion tests and free running propulsion tests in ahead and astern direction. In addition break cut ests from the channel ahead and astern were carried out in 1.37m hick ice. In 1.00m level ice channel clearing tests with variation of azimuth thruster angles was carried out.



## 2 Description of Model and Appendages

Main particulars of ARV design and HSVA model no. 5626					
Scale ratio	λ	1:1	1:24.384		
Length between perpendiculars ¹	Lpp [m]	108.72	4.459		
Length of Waterline	Lwl [m]	106.50	4.368		
Maximum Breadth	B [m]	24.38	0.999		
Breadth at Waterline	Bcwl [m]	23.81	0.975		
Draft ²	T [m]	9.91	0.4.06		
Displacement	V [m]	13385.4	0.923		
Longitudinal Center of Buoyancy	LCB [m]	53.783	2.206		
Metacentric Height	GM [m]	1.3	0.057		

#### Table 1 Main particulars of ARV and HSVA model 5626

# Table 2 Main particulars of HSVA stock propellar. 2238 and 2289

Main particulars of ARV design and HSVAs ock propellers 2288 and 2289					
Scale ratio	9	1:1	1:24.384		
Propeller Diameter	L [m]	4.877	0.200		
Mean Pitch Ratio	Pm/D [-]	0.98520	0.98520		
Area Ratio	Ae/A0 [-]	0.55290	0.55290		
Hub / Diameter Ratio	Dh/D [m]	0.38100	0.38100		
Skew	[deg]	4.50000	4.50000		
No. of Flades	[-]	4	4		



Figure 2 Stern view of stock azimuth-propeller arrangement




Figure 3 Front view of HSVA model no. 5325



Figure 4 Oblique front view of HSVA model no. 5626





Figure 5 Stern front view of HSVA model no 5626



Figure 6 Oblique stern view of HSVA model no. 5626





Figure 7 Side view of aftship HSV2 molet no. 5626

Preiminal HSV2



#### 3 **Test Programs**

#### Series 10000R – Thu, 30-Mar-2023

Ice conditions: Level ice 1.37 m (MS: 56 mm), 700 kPa flexural strength Loading: Tcwl  $(T_a=T_f=9.906 \text{ m})$ 

#### Run 11010R-12010R – Towed Propulsion Test Ahead in Level Ice

Ship model will be towed through the Level Ice at  $V_1 = 6.0$  kts (MS: 625 mm/s) and  $V_2$ = 3.0 kts (MS: 313 mm/s)





### Series 20000 – Mon, 3-Apr-2023

Ice conditions: Level ice 1.37 m (MS: 56 mm), 700 kPa flexural strength Loading: Tcwl (T_a=T_f=9.906 m)

Run 21010R, 22010 R & 23010R – Free Running Tests Ahead in Level Ice (40-70-100 pc PB)





### Series 30000 - Thu, 6-Apr-2023

Ice conditions: Level ice 1.00 m (MS: 41 mm), 700 kPa flexural strength Loading: Tcwl (T_a=T_f=9.906 m)

# Run 31010R, 32010R, 33010R & 34010R - Channel Clearing Tests Ahead in Level Ice

Differents configurations to be tested. Forward speed between 4 kts and 8 kts.





# 4 Test Parameter

# 4.1 Ice Properties

### 4.1.1 Ser 10000R

### Table 3 Model ice thickness in test series 11010R, 12020R

### Level Ice Thickness

Pos.	Port	Centre	Stbd.			Pos.	Port	Centre	Stbd.			1
Tm.	[mm]	[mm]	[mm]			Tm.	[mm]	[mm]	[mm]			
12				$\square$		43	62.0		58.0			
13				$\square$	Π	44	63.0		56.0			
14				$\square$	Π	45	65.0		58.0			
15						46	60.0		58.0			
16	58.0		56.0			47	63.0		61.0			
17	57.0		55.0		Ш	48	60.0		63.0			
18	55.0		56.0			49	65.0		<b>59.0</b>			
19	62.0		59.0			50	63.0		<b>61.0</b>	4	1	
20	60.0		63.0		Ц	51	60.0		59.0	1		
21	62.0		58.0		Ш	52	60.0		<u>57.0</u>	Ц	$\bot$	
22	57.0		57.0			53	<b>62.0</b>		62.0			
23	61.0		45.0			54	<b>(5</b> )		60.0			
24	61.0		59.0			55	<u>319</u>		59.0			
25	65.0		55.0			56	<b>.</b>		57.0			
26	62.0		57.0		Ľ	57	57.0		58.0			
27	65.0		60.0		$\Box$	58	62.0		60.0			
28	59.0		<b>52 0</b>			59	63.0		61.0			
29	62.0		58/			60	65.0		56.0			
30	63.0		61.0			61	62.0		55.0			
31	63.0		62.0			62	62.0		56.0			
32	<b>3.</b> 0		59.0			63	63.0		60.0		Τ	
33	<b>60 0</b>		64.0			64	65.0		63.0		Τ	
34	63.0		62.0			65	65.0		63.0		Ι	]
.5	62.0		61.0	$\square$		66	66.0		61.0		Τ	
36	63.0		64.0	$\square$		67	62.0		62.0		T	]
37	66.0		61.0	$\square$		68		62.0			T	]
38	64.0		62.0	$\square$		69					T	]
39	64.0		60.0	$\square$		70					Ι	]
40	63.0		59.0			71					Ι	]
41	61.0		60.0	$\square$		72					Ι	]
42	61.0		62.0			Av.	62.1	62.0	59.0			1
						Av. of all		60.6				1



Date:	30-Mar	-2023	Time:					Test Se	eries:	1000	)0F	2		
Pos.	Port	Centre	Stbd.				Pos.	Port	Centre	Stbd.			T	
Tm.	[ mm ]	[ mm ]	[ mm ]				Tm.	[ mm ]	[ mm ]	[mm]				
12				Π	Τ	Τ	43	59.0		57.0		Π	1	
13				Π	T	T	44	59.0		57.0		Π	1	
14				Ħ	t	T	45	59.0		56.0	Π	Π	1	
15					T	T	46	58.0		59.0		Π	1	
16	53.0		56.0		Τ		47	60.0		62.0		Π		
17	54.0		56.0		Ι		48	62.0		64.0		Π	T	
18	54.0		57.0				49	61.0		65.0		Π		
19	55.0		57.0		Ι		50	59.0		63.0		Z		V
20	56.0		57.0				51	59.0		62.0		$\mathbf{Q}$	4	
21	58.0		56.0				52	57.0		62.1	$\Box$	$\square$		
22	57.0		58.0				53	58.0		<u>6.</u> 0	1	"		
23	55.0		58.0				54	59.0		59.0		$\Box$	Ι	
24	55.0		58.0				55	58.0		<b>0</b> 3.0		Ш		
25	58.0		59.0				56	57.0		61.0				
26	57.0		60.0				57	<u>59.</u>		60.0		Ш		
27	55.0		59.0	Ц			58	57 7		62.0		Ш		
28	58.0		57.0	Ц			59	58/		65.0	Ц	Ш		
29	59.0		55.0	Ľ			30	60.0		64.0	Ц	Ш		
30	57.0		62.0	$\mathbf{N}$		$\Box$	01	61.0		62.0		Ш		
31	57.0		<b>59.0</b>				62	57.0		60.0		П		
32	60.0		01.9	$\square$			63	58.0		64.0		Ш		
33	59.0	C	61.0	Ц			64	70.0		63.0		Щ		
34	<b>57.0</b>	50	59.0	Ц			65	62.0		64.0	Ц	Ш		
35	61.9		60.0	Ц			66	60.0		65.0		Ш		
36	<u>ől</u> 0		64.0	П			67	62.0		64.0		Π	Ţ	
37	63.0		61.0				68	64.0		62.0		П		
32	62.0		60.0				69	61.0		62.0		$\square$		
39	59.0		58.0	$\square$			70	61.0		64.0		$\prod$	I	
40	55.0		56.0	Ш			70.5	65.0	Heck	64.0		Ш		
41	55.0		58.0	Ľ			72					Ш		
42	57.0		54.0	Π	T		Av.	58.7		60.3			T	

## Table 4 Model ice thickness in test series 13011R, 14011R, 15011R



### **Broken Channel Width**



Figure 9 Plot of the broken channel of test run 13011R and 15011R



Average Width of broken channel: 11010R: 1.09m = 1.089 x B 12010R: 1.09m = 1.089 x B 13011R: 1.18m = 1.179 x B 14011R: 1.18m = 1.179 x B 15011R: 1.18m = 1.179 x B

#### **Flexural Strength**





### **Crushing Strength**

$$\sigma_{cr} = \frac{F_{cr}}{c_i \cdot m \cdot D \cdot k \cdot h} = 143.0 \text{ kPa}$$

- F = force (measured)
- m = shape factor (round structure 0.9)
- k = contact factor (0.4 0.7)
- h = ice thickness D = diameter of indenter
- ci = factor depending on the D/h ratio



Figure 11 Plot of crushing force time series from indentation test, test series 10000R



### Level ice density

Client:	Leidos			
Project:	617456			51///
Date:	30-Mar-2023			
Test Series:			10000R	
Water Density:		Owater =	1005.5	[kg/m³]
Water Salinity:		S _w =	7.0	[‰]
Oxygen set value:			18.3	[mg/l]
Ice densi	ity ρ _i :			0
	<u>w2</u>	0		
	$\mathbf{w}_3$	Pw	6	F
			U	V
1 1				h i
			ク 🔚	
	~ \			
$\left( \uparrow \right)$				$\mathbf{x}$
	63			2
1. Weighin a	40	2. Weighing	3. We	ighing
		W2	۱ ۱	N3
0				@ev
<u> </u>				
Specimen No.	W ₂	<b>W</b> 3	ρ _{ice}	Salinity
or				
			[ka/m ³ ]	[‰]
x∖y-Tank Pos.	[g]	[g]		
x \y-Tank Pos. 21 / 1	[g] 828	[g] 913	912	
x \ y-Tank Pos. 21 / 1 43 / 1	[g] 828 854	[g] 913 953	912 901	
x \ y-Tank Pos. 21 / 1 43 / 1 66 / 1	[g] 828 854 946	[g] 913 953 1034	912 901 920	
x \ y-Tank Pos. 21 / 1 43 / 1 66 / 1	[g] 828 854 946	[g] 913 953 1034	912 901 920	

Figure 12 Level ice density measurements of series 10000R



# 4.1.2 Ser 20000R

Table 5 Level ice thickness measurements of test series 20000R part 1

Level Ice Thickness

Date:	2023-04	4-03	Time:					Test Se	eries:	2000	)0	R		
Pos.	Port	Centre	Stbd.				Pos.	Port	Centre	Stbd.				
Tm.	[ mm ]	[ mm ]	[ mm ]				Tm.	[ mm ]	[ mm ]	[ mm ]				
12					Γ	Π	43	63.0		57.0	Π		Τ	
13							44	58.0		58.0	Π			
14					Γ		45	57.0		56.0	Π	Τ	Ţ	
15							46	<b>59.0</b>		<b>58.0</b>				
16							47	60.0		60.0	$\Box$	Z		
17							48	59.0		<b>99.0</b>	N			
18	52.0		60.0				49	61.0		61.0	$\square$			
19	58.0		58.0				50	60.0		0.0	Ш			
20	<b>56.0</b>		60.0				51	59.0		<b>59.0</b>	Ц			
21	<b>58.0</b>		61.0				52	69.0		57.0	Ц			
22	59.0		61.0				53	<b>2.0</b>	<b>)</b>	58.0	Ш			
23	58.0		60.0				54	<u>, Ó.O</u>		<b>59.0</b>	Ц			
24	57.0		<b>58.0</b>				50	59.0		60.0	Ц			
25	60.0		57.0	4		Ľ	56	57.0		<b>59.0</b>	Ш			
26	58.0		56.0	N,	L	Ц	57	58.0		58.0	Ц			
27	59.0		<u>55.</u>				57.4		<b>58.0</b>		Ц			
28	56.0		<u>58.0</u>				59				Ц			
29	56.0		59.0				60				Ц		_	
30	60.0		58.0				61				Ц			
31	<u> </u>		<b>59.0</b>				62				Ц		$\downarrow$	
32	63.0		56.0				63				Ц			
32	62.0		<b>59.0</b>				64				Ц			
34	60.0		59.0			Ц	65				Ц	$\downarrow$	$\downarrow$	
35	60.0		59.0			Ц	66				Ц	╡	$\downarrow$	
36	63.0		60.0			Ц	67				Ц	╡	$\downarrow$	
37	62.0		61.0			Ц	68				Ц		$\downarrow$	
38	61.0		<b>59.0</b>			Ц	69				Ц	╡	$\downarrow$	
39	62.0		<b>58.0</b>	Щ			70				Ц		$\downarrow$	
40	59.0		<b>58.0</b>				71				Ц	╡	$\downarrow$	
41	58.0		58.0				72				$\square$			
42	58.0		56.0				Av.	59.2	58.0	58.6				
							Av. of all		58.9					



Table 6 Level ice	thickness me	asurements o	of test s	series	20000R	part 1
			Jucase			P

Date:	2023-04	4-03	Time:				Test Se	eries:	2000	0R		
Pos.	Port	Centre	Stbd.			Pos.	Port	Centre	Stbd.			
Tm.	[ mm ]	[ mm ]	[ mm ]			Tm.	[ mm ]	[ mm ]	[ mm ]			
12				Π		43	63.0		60.0		Π	
13						44	57.0		60.0			
14						45	57.0		58.0			
15						46	59.0		59.0			•
16						47	59.0		61.0		Y	T
17						48	63.0		62.0			
18						49	61.0	•	3.0			
19						50	61.0		<mark>60 9</mark>			
20						51	60.0		<mark>60.0</mark>			
21						52	58.0	0	57.0		Ш	
22						53	67.0		65.0		Ш	
23						54	3.0	*	<b>59.0</b>			
24						55	<mark>59.0</mark>		<b>59.0</b>		Ш	
25						56	58.0		<b>59.0</b>		Ш	
26				$\leq$	$\Box$	57	59.0		57.0		Ш	
27						58	59.0		58.0		Ш	
31.5						59	61.0		61.0		Ш	
32	61.0		<u>5.</u> 0			60	61.0		<b>58.0</b>		Ш	
32.5	62.0		62.0			61	57.0		56.0		Ш	
33	61.0		61.0			62	55.0		55.0		Ш	
33.5	<u>62</u> 0		60.0			63	58.0		57.0		Ш	
34	60.0		61.0			64	<b>56.0</b>		<b>65.0</b>		Ш	
3 .5	60.0		68.0			65	59.0		63.0		Ш	
35	ow		<b>69.0</b>			66	60.0		63.0		Ш	
35.5	63.0		60.0			67	61.0		61.0			
37						68	61.0		60.0		Ш	
38						69	64.0		62.0		Ш	
39						70	62.0		62.0			
40						71	61.0		58.0		Ш	
41						71.1	58.0		58.0			
42						Av.	60.0		60.4			
						Av. of all		60.2				



### **Broken Channel Width**



Figure 13 Measurement of broken characteristics with, test run nos. 21010R-24010R



Figure 14 Measurement of broken channel width, test run nos. 25010R-26010R



#### **Flexural Strength**





#### **Crushing Strength**

$$\sigma_{cr} = \frac{F_{cr}}{c_i \cdot m \cdot D \cdot k \cdot h} = 155.6 \text{ kPa}$$

- F = force (measured)
- m = shape factor (round structure 0.9)
- k = contact factor (0.4 0.7)
- h = ice thickness D = diameter of indenter
- ci = factor depending on the D/h ratio



Figure 16 Plot of crushing force time series from indentation test, test series 20000R



### Level ice density



Figure 17 Level ice density measurements of series 20000R



# 4.2 Ser 30000R

Level Ice Thickness

Date:	2023-04	4-06	Time:					Test Se	eries:	3000	)0F	R	
Pos.	Port	Centre	Stbd.				Pos.	Port	Centre	Stbd.			
Tm.	[ mm ]	[ mm ]	[ mm ]				Tm.	[ mm ]	[ mm ]	[ mm ]			
12					Τ	Τ	43	43.0		43.0	Π	Τ	
13				Π	T	Τ	44	43.0		41.0	Π	Τ	
14				Π	T	T	45	41.0		41.0		╈	
15					T	T	46	43.0		42.0	$\square$	T	
16							47	45.0		45.0	Π	T	
17					T	Τ	48	46.0		46.0		$\mathbb{D}$	
18	40.0		44.0		T	Τ	49	46.0		46.0	$\overline{\mathbf{N}}$		
19	43.0		41.0		Τ	Τ	50	44.0		44.0	D	Τ	
20	43.0		44.0		Τ	Τ	51	45.0		44.0	ſŢ	Τ	
21	43.0		44.0		Τ	Τ	52	43.0		41.0	Π	Т	
22	43.0		44.0		Τ	Τ	53	42.0		44.0	Π	Τ	
23	44.0		41.0			Τ	54	<u></u>	1	45.0		Τ	
24	43.0		45.0			Τ	55	44.0		43.0		Τ	
25	45.0		45.0			Τ	50	44.0		43.0		Τ	
26	43.0		<b>46.0</b>			$\uparrow$	57	42.0		43.0			
27	44.0		<b>45.0</b>	$\Box$			58	45.0		43.0			
28	42.0		44.0	$\Box$		Y	59	46.0		<b>45.0</b>			
29	42.0		42 0				60	45.0		44.0			
30	44.0		45.0				61	47.0		45.0		Τ	
31	45.0		45.0	Π		Τ	62	48.0		44.0	Π	Τ	
32	46.0		<b>45.0</b>				63	46.0		<b>45.0</b>		Τ	
33	47.0		45.0				64	48.0		48.0			
34	44.0		45.0	Π			65	44.0		47.0	Π	Т	
35	45.0		47.0	Π			66	46.0		47.0	Π	Т	
36	42.0		44.0				67	44.0		48.0		T	
37	42.0		44.0				68	46.0		45.0		Τ	
38	44.0		45.0	Π			69	44.0		43.0		Τ	
39	43.0		44.0	Π			70	47.5		47.0		Τ	
40	42.0		44.0				70.25		47.0			T	
41	42.0		42.0	Π			72					Ţ	
42	42.0		40.0	Π			Av.	44.0	47.0	44.2			
			•				Av. of all		44.2				

Figure 18 Level ice density measurements of series 30000R



### **Broken Channel Width**



Figure 20 Flexural strength for test series 20000R



### **Crushing Strength**

$$\sigma_{cr} = \frac{F_{cr}}{c_i \cdot m \cdot D \cdot k \cdot h} = 77.1 \text{ kPa}$$

- F = force (measured)
- m = shape factor (round structure 0.9)
- k = contact factor (0.4 0.7)
- h = ice thickness D = diameter of indenter
- ci = factor depending on the D/h ratio





Figure 21 Plot of crushing force time series from indentation test, test series 30000R



Client:	Leidos					30////
Date:	2023-04-06	3				
		Tes	st Series 30	0000R		
General						
Weight per Ste	р	200	[g]	1.9628	[N]	
ρ_w:		1005.5	[kg/m^3]			
ny:		0.3	[-]			
g:		9.814	[m/s^2]			
Test No.:	#001			Test No.:	#002	
Time:	06:28	[hh:mm]		Time:	06:36	[hh:m:n]
Tank Pos. X:	21.00	[m]		Tank Pos. X:	43.00	[m]
h_ice_1:	44.50	[mm]		h_ice_2:	44.00	[mn]
σ_f_1:	43.10	[kPa]		σ_f_2:	<u>-19.2</u> 0	1-7 a]
	-				$(\Omega)$	
E_mean:	52	[MPa]		E_mean:	21	[MPa]
E_mean/ $\sigma_f$ :	1205	[-]		E_mean/o_f:	428	[-]
				$\cdot \mathbf{O}$		
Test No.:	#003			<u> </u>	#004	
Time:	06:44	[hh:mm]		11 me:		[hh:mm]
Tank Pos. X:	66.00	[m]		Tank Pos. X:		[m]
h_ice_1:	47.00	[mm]	$\mathbf{\nabla}$	h_ice_2:		[mm]
σ_f_1:	41.00	[kPa]	•	σ_f_2:		[kPa]
	(					
E_mean:	• 23	[MPa]		E_mean:		[MPa]
E_mean/ $\sigma_f$ :	59	[-]		E_mean/ $\sigma_f$ :		[-]
	$\mathbf{V}$					

Figure 22 Plot of crushing force time series from indentation test, test series 30000R



### Level ice density

Client:	Leidos			
Project:	617456			51///
Date:	6.4.2023			
Test Series:			30000R	
Nater Density		0	1005 5	[ka/m³]
Nator Solinity:		Pwater -	7.0	[1.9,]
Water Samity.		5 _w =	7.0	[700 ] [
Jxygen set value:		U ₂ =	19.3	[mg/I]
Ice dens	sity ρ _i :			
	0: - <u>W2</u>	0		
	W3	PW		(F)
				н. I
			<b>()</b>	
		5		
	621			$\mathbf{Y}$
1 Weighing		2 Weighing	2 14	loighing
		2. weighnig	3. 1	vergning
10 Lare		W2		W3
v 01				Øev
				(gev
	1			
Specimen No.	W ₂	W ₃	Pice	Salinity
or				
x \ y-Tank Pos.	[9]	[9]	[kg/m³]	[‰ ]
21 / 1	670	734	<b>9</b> 18	3.4
43 / 1	628	693	911	3.3
66 / 1	729	791	927	3.5
maan	675.7	730.2	919.6	2.4
inean ///	010.1	105.0	510.0	0.4

Figure 23 Level ice density measurements of series 30000R



# 5 Test Observations

# 5.1 Ser 10000R

During towed propulsion test in level ice ahead the model showed typical breaking behaviour at the bow. The center crack is fully developed before the fore skeg (which is now wider) interacts with the ice floes. At the outer lower edges of the skeg some broken ice floes get crushed into smaller pieces. The sides and outer part of flat bottom / box keel are fully covered by ice floes while the inner part (areas of sonar beams) remains mainly ice free. At the aftship some ice floes which are sliding along the bilge radius area are getting sucked into the propellers. Most of the ice floes are attached to the hull and can pass above the propellers but some of them are hitting the upper blade tip (torque increase). Possibility of additional clearance of the propellers to hull should be checked.



Figure 24 Test run no. 11010R underwater ice observations

During towed and free running tests astern the model showed good icebreaking and ice clearing behaviour similar to the behaviour of previous tested version. In the center between the pods rectangular floes are broken and they get split at the aft skeg. At the outer hull area relative small floes get broken which can be easily cleared by the propeller wash. Despite some single smaller floes sliding along the bottom the hull remains mainly ice free. Crushing of ice floes seem to occur at the struts of Pods which is indicated by a streamline of crushed ice in the underwater video.





Figure 26 Test run no. 14011R underwater ice observations



# 5.2 Ser 20000R

During free running propulsion test in level ice ahead the model showed typical breaking behaviour at the bow. The center crack is fully developed before the fore skeg (which is now wider) interacts with the ice floes. At the outer lower edges of the skeg some broken ice floes get crushed into smaller pieces. The sides and outer part of flat bottom / box keel are fully covered by ice floes while the inner part (areas of sonar beams) remains mainly ice free. At the aftship some ice floes which are sliding along the bilge radius area are getting sucked into the propellers. Compared to the observations made during towed propulsion tests the ice coverage and propeller-ice interaction seem to be less in free running condition (also due to lower advance speed).



Figure 27 Test run no. 21010R underwater ice observations

The irst free running test astern was carried out at 40% power. The model was accelerated in the ice free channel and decelerated immediately after entering the level ice with bow. The model came to full stop and could not be moved with the available thrust. A second test astern at 70% power was added to the program. The model could be started with available thrust and was maintaining a continuous speed. The breaking and clearing behaviour was very similar to the one observed during towed propulsion tests while the ice overage seemed even less.





Figure 28 Test run no. 24011R underwater ice observations

After free running tests astern two break out maneuver, were carried out. The tests were started from previous broken channel (with naturally broken width). First : break out maneuver astern was performed. The model was accelerated in the channel and the thrusters were turned shortly after. The model immediately began to pull into the surrounding ice stern first showing significant heel angle (abt. 8 degree). The break out was completed within small space and be model could be turned to 90 degree and could leave the channel completely within short time. The propellers remained mainly ice free while one of the propellers was occasionally milling single coeffices.

After the break out test astern was completed the model was moved to another position of the channel and a break out test abe d was started. The model was accelerated to a constant speed and the thrusters were turned therefeter. The plodel began to slide along the edge of the channel breaking off pieces of ice and widening the channel. During this process the model showed significant heel (abt. 7 degree). After a certain distance the model could obtain an efficient angle of attack and could enter the surrounding ice with the bow while the aft ship was pushed into opposite ice next to the channel.





Figure 30 Test run no. 26010R underwater ice observations



# 5.3 Ser 30000R

Test run 31010R was carried out to check the natural breaking behaviour of the model in around 1m level ice (full scale) while the thrusters are aligned in longitudinal direction.



# Figure 31 Test run no. 310.0R . nderwater ice observations

In test run no. 32010R both drusters were set at a toe in angle of around 60 degree. The model was proceeding at low speed on the channel behind the vessel was cleared by the thruster wash. Only single small pieces of ice remained in the wake of the model.

pre'





Figure 32 Test run no. 32010R underwater ice observations

In test run no 33010R both thursters were put at in toe out angle of around 60 degree. The propeller wash was now coring and interfering. Larger pieces of ice were observed in the channel behind the model.



Figure 33 Test run no. 33010R underwater ice observations



In test run no. 34010R the thruster angles were alternating from one side to the other while both thrusters were moved in parallel. The channel behind the vessel was cleared by the thruster wash and the channel was widened by the relative strong motions of the model (roll and yaw motion).



Figure 34 Test run no. 34010R under water ice observations



Figure 35 Test run no. 35010R underwater ice observations 1



In test run no 35010R a side step was performed by moving the thrusters such that the model did not make any significant forward or backward moves but the thurster wash was creating an open pool beside the starboard side of the model. It turned out after some attempts that the operator needed to move both thrusters to the same side and push the model against the intact ice on one side to create the open pool on the other side. A pool of sucfficient size could be opened using this strategy.



Figure 36 Test ran vo. 35010R underwater ice observations 2

During tests run 36010R the model was running back through the previously broken channel (after being turned round in the open pool created in test run 35010R). The model was using the toe in the user strategy (same as test urn 32010R) during moving back in order to completely clear the channel.





Figure 37 Test run no. 36010R underwater ice observations

Test run 37010R was used to create a wider riled of brahs ice. The model was cutting larger fragments off the intact ice from the sides of the b sin and was further breaking this ice into smaller brash ice pieces running astern.



Figure 38 Test run no. 37011R underwater ice observations 1





Figure 40 Test run no. 37011R underwater ice observations 3



In test run 38010R the model was moved through the brash ice field and was clearing the brash ice with thruster wash with thruster angles angles 85, 60 and 30 degree toe in. The clearing was very sufficient at all three thruster angles and different resulting speeds.



Figure 41 Test run no. 38010R under water ice observations 1 (85 degree thruster angle)



Figure 42 Test run no. 38010R underwater ice observations 2 (60 degree thruster angle)






# 6 Test Results

### 6.1 Test run no. 11010R, Towed Propulsion Test Ahead in Level Ice, 6 knots

Level Ice	Test	106	106m	Т	ank water	density :	1005.5kg/n	n³			
Drait form	vard/art . U	.40011/0.4	400111								
Corrected	intervals of	data									
Sub	V	FN	n_mean	Q_tot	PD_tot	⊺_tot	FP	dFP/dT_tot	RIT		
interval	[m/s]	[-]	[1/s]	[Nm]	[W]	[N]	[N]	[-]	[N]		
I_1	0.6250	0.0945	14.1992	8.2210	733.4370	221.5780	39.0819	-1.0053	261.8265		
1_2	0.6250	0.0945	8.8987	3.8791	216.8796	63.7983	208.6000	-1.0053	272.7342		
I_3	0.6251	0.0945	11.8968	6.7563	505.0150	147.8573	119.6320	-1.0053	268.2678		
I_4	0.6250	0.0945	3.9007	1.1502	28.1942	-14.1275	274.6030	-1.0053	260.4012		
											$\sim$
arget val	ues							RIT_mea	n = 265.807	N	$\sim$
H_ice	SIG	F_ice	FID								
[mm]	[k	Pa]	[-]	lo	e feature :	Level ice					
56.1	844	28.7073	0.055	0							
Correctio	n for devia	tions betv	veen actua	al and targ	et test con	ditions				Vj	
est No.	H_ice	SIG_F	FID	) FN_	HI F	1 F	2 F	3 _T'	FP	dFP'/dT'	RIT'
	[mm]	[kPa]	[-]	[-	] (Н	I) (SI	GF) (FI	D)	[N]	[-]	[N]
I_1	60.3000		32 0	.1100 0	.8420 0	.9211 (	0.9647 0	5 155.22	87 27.3792	-1.0053	183.4249
I_2	2 60.3000		32 0	.1100 0	.8420 0.9211		0.9647	.7885 44.69	45 146.1368	-1.0053	191.0665
I_3	60.3000		32 0	.1100 0	.8421 0	.9211 (	0.95 ++ 0		83.8097	-1.0053	187.9381
I_4	60.3000		32 0	.1100 0	.8420 0	.9211	0.5 C	.78 ₅₀ -9.89	971 192.3758	-1.0053	182.4266
						JK					
Mean	: 60.	3000	32	0.1100		0.9211	0.9647	0.7885		RIT'_m	ean = 186.21
Approxima Final mod	ation order Iel scale re	for PD v	s T : 2	2ľ	3	-					
V	RIT'_m	ean d	τρ', 'τ'	ť	T'_sp	PD'_sp	ETAD'				
[m/s]	[N]			[-]	[N]	[W]	[-]				
0.62	50 18	214	-1.0053	-0.0053	185.2391	616.6468	0.1887				
					Self propuls	ion point					
	5										





Figure 44 Total resistance ahead in 127m level ice, 6knots, model scale



Figure 45 Total thrust ahead in 1.37m level ice, 6knots, model scale









Figure 48 Total thrust ahead in 1.37m level ice, 6knots, full scale







# 6.2 Test Run No. 12010R, Towed Propulsion Test Ahead in Level Ice, 3 knots

Level Ice Draft for	e Test ward/aft : 0	406m/0	406m	Т	ank water	density : 1	005.5kg/n	N ³			
	listeriale e	40011/0.	400111								
Currected	i intervais c			O tot	DD tot	Ttat	ED.		DIT		
interval	v [m/s]	[_]	[1/c]	[Nm]				[_]			
12 1	0 3129	0.0473	11 4993	5 6849	410 7400	158 0267	34 5059	-0.9877	190 5876		
LI2 2	0.3130	0.0473	7.0001	2,4350	107.0921	44.1407	146.9910	-0.9877	190.5884		
_ LI2_3	0.3130	0.0473	9,4995	3.9115	233.4660	102.8329	90,7803	-0.9877	192.3476		
	0.3131	0.0473	2,6988	0.3520	5,9647	-8.7388	199.8300	-0.9877	191,1988		
Forgotiva								RIT_mea	ın = 191.181	N	
H ice	SIG	ice	FID								<2
[mm]	[k]	Pa]	[-]	lce	e feature :	Level ice					
56.	1844	28.7073	0.055	0							
Carraatia	n for doui-		veen eet			ditione			C.	11/	
			ween actua	I and large				יד כ			DIT
Test No.	H_ICe	SIG_F	FID	FIN_					F	1	
12 1	62 4000	[KFa]	32 0	1100 0	4216 0	8696 0	9566 (1	7885 103.64	57 22 1	-0.9877	125.0150
LI2 2	62 4000		32 0	1100 0	4217 0	8696 0	9566 C	7885 20 9	537 96 <b>4</b> 173	-0.9877	125.0150
 LI2_3	62,4000		32 0	1100 0	4217 0.	8696 0.	9566. 0	5 67.4	59.5466	-0.9877	126,1696
4	62.4000		32 0.	1100 0	4218 0.	.8696 0.	9567	7885 -5.73	322 131.0778	-0.9877	125.4161
						0	5	3			
Mean	1: 62.4	4000	32	0.1100		1.8 96	0.9566	0.7885		RIT'_m	iean = 125.40
Approxim	ation order	for PD v	s T : 2		$\langle \rangle$						
Final mod	del scale re	sults									
V	RIT'_m	ean d	FP'/dT'		T'_sp	PD'_sp	ETAD'				
[m/s]	[N]		F	(F)	[N]	[W]	[-]				
0.31	30 125	.4040	-6 9877	0.0123	126.9649	311.0902	0.1262				
	. • •	2			Self propuls	ion point					
	11										





Figure 51 Total thrust ahead in 1.37m level ice, 3knots, model scale









Figure 54 Total thrust ahead in 1.37m level ice, 3knots, full scale







#### 6.3 Test Run No. 13011R Towed Propulsion Test Astern in Level Ice, 3 knots



Figure 56 Total resistance astern in 1.37m level ice, 3knots, moderl scale





Figure 58 Delivered power astern in 1.37m level ice, 3knots, model scale



#### Ice Model Tests for Antarctic Research Vessel (ARV) Leidos, Inc.



Figure 59 Total resistance astern in 1.37m level ice, 3knots, full scale

1.5

2

V [kts]

2.5

3

3.5

1

0.5

0





Figure 60 Total thrust astern in 1.3 m level ice, 3knots, full scale



Figure 61 Delivered power astern in 1.37m level ice, 3knots, full scale



#### 6.4 Summary of Free Running Test Results

#### Table 7 Results of free running tests in 1.37m level ice

		rection	Transfer to power correction			MS	FS corrected values					
Description	PD_act	i_corr	ΔR	F4	F1*F2*F3*F4	b	(F1*F2*F3*F4)^b	PD'	PD"	PB"	% PBmax	Speed
	[MW]	[-]	[kN]	[-]	[-]	[-]	[-]	[W]	[MW]	[MW]	[%]	[kts]
Ice condition 2 - Hi = 1.37m let	vel ice + 0.305m sno	ow										
Run 14011R	43.44	-0.202	-332.64	0.7921	0.5524	1.341	0.45134	382.5	19.61	19.61	103.19	3.17
Run 15011R	54.65	-0.225	-371.14	0.7680	0.4969	1.326	0.39544	437.7	21.61	21.61	113.74	3.46
Ice condition 2 - Hi = 1.37m let	vel ice + 0.305m sn	ow										
Run 21010R	34.33	-0.194	-320.32	0.7843	0.5821	1.407	0.46714	322.2	16.04	16.04	84.40	1.82
Run 23010R	40.64	-0.209	-344.96	0.7829	0.5617	1.364	0.45531	368.7	18.50	18.50	97.38	2.69
Run 24111R	26.62	-0.203	-334.18	0.7696	0.5583	1.421	0.43684	240.8	11.63	11.63	61.21	1.54
Run 25011R	39.23	-0.228	-375.76	0.7429	0.4773	1.416	0.35088	299.3	13.77	13.77	72.46	1.63
Run 26010R	40.64	-0.209	-344.96	0.8004	0.5772	1.308	0.48747	378.3	19.81	19.81	104.26	3.84



Figure 62 Summary of free running test results ahead





Figure 63 Summary of free running test results astern

The detailed results of the free running propulsion tests are presented in the following sections.

Pretiminan



### 6.5 Test Run No. 14011R Free Running Test Astern in 1.37m Level Ice, 70% Power









Figure 67 Test run no. 14011R, free running test astern, thrust





Figure 69 Test run no. 14011R, free running test astern, power



### 6.6 Test Run No. 15011R Free Running Test Astern in 1.37m Level Ice, 100% Power









ProjectNo. 617456 HSV/A Run 15011R Leidos - ARV Series 10000R Free Running Test Astern 2023-03-30 Date Ice Thickness : 1.37 m Revolutions PS Propeller Revolutions, FS Revolutions SB 250 Revolutions [1/min] 200 150 100 50 0 -50 0 50 100 150 200 250 300 Time [s] Figure 72 Test run no. 15011R, free run fire test astern, propeller revolution ProjectNo. 617456 514 Run 15011R Leidos - ARV Series 10000F Free Running Test Astern Date Propeller Thrust PS Thrust, FS Propeller Thrust SB 3000 Thrust [kN] 2000 1000 0

Figure 73 Test run no. 15011R, free running test astern, thrust

-1000





Figure 75 Test run no. 15011R, free running test astern, power



### 6.7 Test Run No. 21010R Free Running Test Ahead in 1.37m Level Ice, 40% Power



Figure 76 Test run no. 21010R track plot







Figure 79 Test run no. 21010R, free running test astern, thrust





Figure 81 Test run no. 21010R, free running test astern, power



### 6.8 Test Run No. 23010R Free Running Test Ahead in 1.37m Level Ice, 70% Power



Figure 82 Test run no. 23010R track plot







Figure 85 Test run no. 23010R, free running test astern, thrust





Figure 87 Test run no. 23010R, free running test astern, power



#### 6.9 Test Run No. 24011R Free Running Test Ahead in 1.37m Level Ice, 100% Power



Figure 88 Test run no. 24011R track plot



Figure 89 Test run no. 24011R, free running test astern, velocity





Figure 91 Test run no. 24011R, free running test astern, thrust





Figure 93 Test run no. 24011R, free running test astern, power



#### 6.10 Test Run No. 24111R Free Running Test Astern in 1.37m Level Ice, 100% Power



Figure 94 Test run no. 24111R track plot



Figure 95 Test run no. 24111R, free running test astern, velocity





Figure 97 Test run no. 24111R, free running test astern, thrust





Figure 99 Test run no. 24111R, free running test astern, power



#### 6.11 Test Run No. 25011R Break Out Test Astern in 1.37m Level Ice



Figure 100 Test run no. 25010R track plot







Figure 103 Test run no. 25011R, free running test astern, velocity




Figure 105 Test run no. 25011R, free running test astern, POD angle





Figure 107 Test run no. 25011R, free running test astern, torque







#### 6.12 Test Run No. 26010R Break Out Test Ahead in 1.37m Level Ice







Figure 110 Test run no. 26010R, free running test ahead, heading





Figure 112 Test run no. 26010R, free running test ahead, velocity





Figure 114 Test run no. 26010R, free running test ahead, POD angle





Figure 116 Test run no. 26010R, free running test ahead, torque



ProjectNo. 617456 HSI⁄A Run 26010R Leidos - ARV Series 20000R **Break Out Test Ahead** 2023-04-03 Date : Ice Thickness : 1.37 m Power PS Propeller Power Demand, FS Power SB 35000 Figure 117 Test run no. 26010R, free running rest ane d, power Power [kW] 30000 300 Time [s]



# 6.13 Test Run No. 31010R Free Running Test Ahead in 1.0m Level Ice, 100% Power









Figure 121 Test run no. 31010R, free running test ahead, propeller revolution





Figure 123 Test run no. 31010R, free running test ahead, thrust





Figure 125 Test run no. 31010R, free running test ahead, power



## 6.14 Test Run No. 32010R Channel Clearing Test Ahead in 1.00m Level Ice, 60 Degree Pod Angle Inward



Figure 126 Test run no. 32010R track plot



Figure 127 Test run no. 32010R, channel clearing test ahead, heading





Figure 129 Test run no. 32010R, channel clearing test ahead, propeller revolution





Figure 131 Test run no. 32010R, channel clearing test ahead, thrust





Figure 133 Test run no. 32010R, channel clearing test ahead, power



## 6.15 Test Run No. 33010R Channel Clearing Test Ahead in 1.00m Level Ice, 60 Degree Pod Angle Outward



Figure 134 Test run no. 33010R track plot







Figure 137 Test run no. 33010R, channel clearing test ahead, propeller revolution





Figure 139 Test run no. 33010R, channel clearing test ahead, thrust





Figure 141 Test run no. 33010R, channel clearing test ahead, power



# 6.16 Test Run No. 34010R Channel Clearing Test Ahead in 1.00m Level Ice, Alternating Pod Angle



Figure 142 Test run no. 34010R track plot







Figure 145 Test run no. 34010R, free running test ahead, propeller revolution





Figure 147 Test run no. 34010R, free running test ahead, thrust





Figure 149 Test run no. 34010R, free running test ahead, power



### 6.17 Test Run No. 35010R Side Step Test in 1.0m Level Ice





Figure 150 Test run no. 35010R track plot





Figure 153 Test run no. 35010R, free running test ahead, velocity





Figure 155 Test run no. 35010R, free running test ahead, POD angle





Figure 157 Test run no. 35010R, free running test ahead, torque







#### Test Run No. 36010R Channel Clearing Test Ahead in 1.0m Level Ice, 80 6.18 **Degree Pod Angle Inward**



Figure 159 Test run no. 36010R track plot



Figure 160 Test run no. 36010R, free running test ahead, heading





Figure 162 Test run no. 36010R, free running test ahead, propeller revolution





Figure 164 Test run no. 36010R, free running test ahead, thrust





Figure 166 Test run no. 36010R, free running test ahead, power



#### 6.19 Test Run No. 37011R Creation of Brash Ice Field











Figure 170 Test run no. 36010R, free running test ahead, propeller revolution





Figure 172 Test run no. 36010R, free running test ahead, thrust




Figure 174 Test run no. 36010R, free running test ahead, power



## Test Run No. 38010R Brash Ice Clearing Test, 85, 60, 30 Degree POD 6.20 Angle



Figure 175 Test run no. 38010R track plot



Figure 176 Test run no. 38010R, free running test ahead, heading





Figure 178 Test run no. 36010R, free running test ahead, propeller revolution





Figure 180 Test run no. 36010R, free running test ahead, thrust





Figure 182 Test run no. 36010R, free running test ahead, power





## 6.21 Propeller-Ice Interaction

Figure 183 Comparison of power vs. thrust curve in towed propulsion test and ice free overload test

## 7 Summary and Conclusions

- According to the model test pr dict, n the model will achieve a speed of 3knots ahead in level ice 1.37m (snow cover 0.305 n) a power of 17392kW
- According to the model test prediction the model will achieve a speed of 3knots astern in level ice 1.37m (snow cover 0.305m) at power of 18416kW
- The propelle, icc interaction of HSVA model 5626 turned out to be less than for HSVA model 5601
- The design is capable to break out from previous broken channel and leave the channel completely in the second sec
  - The break out astern can be accomplished within a bit more than one ship length
- The break out ahead requires 2-3 ship length to pre-widen the channel
- The design is able to clear the broken channel in the wake of the vessel by operating the thrusters at an angle
- The design is able to clear a wider brash ice field while proceeding at slow speed
- The design is bale to clear brash ice in the wake of the vessel while running at moderate speed

## Table 8 Comparison ice performance data hull variant 11 and hull variant 6 in 1.37mlevel ice

Speed		Hull variant 11	Hull variant 6
ahead	power @ 3knots kW	17393	19358
astern	power @ 3knots kW	18416	18156